Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tú Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 2 2022 lúc 23:20

Sửa đề: D là trung điểm của AE

Xét ΔEAC có 

D là trung điểm của AE
I là trung điểm của CE

Do đó: DI là đường trung bình

=>DI//AC và DI=AC/2

Xét ΔEBC có 

F là trung điểm của BC

I là trung điểm của EC

Do đó: FI là đường trung bình

=>FI//EB và FI=EB/2

Ta có: FI=EB/2

DI=AC/2

mà EB=AC
nên IF=ID

hay ΔIFD cân tại I

=>\(\widehat{IFD}=\widehat{IDF}\)

mà \(\widehat{DFI}=\widehat{FDB}\)(FI//AB)

nên \(\widehat{FDI}=\widehat{FDB}\)

\(\Leftrightarrow\widehat{BDI}=2\cdot\widehat{IDF}\)

hay \(\widehat{BAC}=2\cdot\widehat{IDF}\)

Thảo Nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 8 2021 lúc 14:22

Bài 1: 

a: Ta có ΔABC cân tại A
mà AD là đường phân giác ứng với cạnh đáy BC

nên AD⊥BC

b: Ta có: AE+BE=AB

AF+FC=AC

mà BE=CF

và AB=AC

nên AE=AF

Xét ΔAED và ΔAFD có 

AE=AF

\(\widehat{EAD}=\widehat{FAD}\)

AD chung

Do đó: ΔAED=ΔAFD

Suy ra: \(\widehat{EDA}=\widehat{FDA}\)

hay DA là tia phân giác của \(\widehat{EDF}\)

Trần tú Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 2 2022 lúc 23:19

Sửa đề: D là trung điểm của AE

Xét ΔEAC có 

D là trung điểm của AE
I là trung điểm của CE

Do đó: DI là đường trung bình

=>DI//AC và DI=AC/2

Xét ΔEBC có 

F là trung điểm của BC

I là trung điểm của EC

Do đó: FI là đường trung bình

=>FI//EB và FI=EB/2

Ta có: FI=EB/2

DI=AC/2

mà EB=AC
nên IF=ID

hay ΔIFD cân tại I

=>\(\widehat{IFD}=\widehat{IDF}\)

mà \(\widehat{DFI}=\widehat{FDB}\)(FI//AB)

nên \(\widehat{FDI}=\widehat{FDB}\)

\(\Leftrightarrow\widehat{BDI}=2\cdot\widehat{IDF}\)

hay \(\widehat{BAC}=2\cdot\widehat{IDF}\)

Nguyễn Lê Phước Thịnh
2 tháng 2 2022 lúc 23:20

Sửa đề: D là trung điểm của AE

Xét ΔEAC có 

D là trung điểm của AE
I là trung điểm của CE

Do đó: DI là đường trung bình

=>DI//AC và DI=AC/2

Xét ΔEBC có 

F là trung điểm của BC

I là trung điểm của EC

Do đó: FI là đường trung bình

=>FI//EB và FI=EB/2

Ta có: FI=EB/2

DI=AC/2

mà EB=AC
nên IF=ID

hay ΔIFD cân tại I

=>\(\widehat{IFD}=\widehat{IDF}\)

mà \(\widehat{DFI}=\widehat{FDB}\)(FI//AB)

nên \(\widehat{FDI}=\widehat{FDB}\)

\(\Leftrightarrow\widehat{BDI}=2\cdot\widehat{IDF}\)

hay \(\widehat{BAC}=2\cdot\widehat{IDF}\)

Han
Xem chi tiết
Nguyễn Đình Văn
27 tháng 2 2021 lúc 8:52

sadadwasd

Khách vãng lai đã xóa
Trung Nguyen
Xem chi tiết
Nguyễn Linh
Xem chi tiết
missing you =
16 tháng 7 2021 lúc 9:18

a, gọi giao điểm AD và BE là F 

theo bài ra có AD phân giác \(\) của \(\angle\left(BAC\right)\)

=>AF là phân giác của \(\angle\left(BAE\right)\)(1)

lại có AE=AB=>tam giác ABE cân tại A (2)

từ(1)(2)=>tam giác ABE cân tại A có AF là phân giác nên đồng thời cũng là đường cao\(=>AF\perp BE\)

hay \(AD\perp BE\)

b, theo BDT tam giác ABD \(=>BD< AB+AD\)

tương tự trong tam giác ACD \(=>CD< AD+AC\)

\(=>BD-CD< AB+AD-AD-AC=AB-AC< 0\)(do AB<AC)

\(=>BD-CD< 0=>BD< CD\)

 

Nguyễn Linh
16 tháng 7 2021 lúc 9:07

Giups mình với ạ

 

 

PoKe NaSa
Xem chi tiết
✎﹏ Pain ッ
13 tháng 3 2023 lúc 19:50

1.Ta có: AB = AC `=>` Tam giác ABC cân 

Xét tam giác ABD và tam giác ACD, có:

AB = AC ( gt )

BD = CD ( gt )

AD: cạnh chung

Vậy tam giác ABD = tam giác ACD ( c.c.c )

Xét tam giác ABC có AB = AC `=>` Tam giác ABC cân

Mà AD là đường trung tuyến `=>` AD cũng là đường cao

`=>` AD vuông góc BC

2. Xét tam giác ADC và tam giác EDB, có:

BD = CD ( gt)

\(\widehat{BDE}=\widehat{ADC}\) ( đối đỉnh )

AD = ED ( gt )

Vậy tam giác ADC = tam giác EDB ( c.g.c )

`=>` \(\widehat{DAC}=\widehat{DEB}\)

`=>` AC // BE ( so le trong )

3. Xét tam giác AMD và tam giác AND, có:

AM = AN ( gt )

\(\widehat{MAD}=\widehat{NAD}\) (tam giác ABC cân, AD là đường cao cũng là phân giác )

AD: chung

Vậy tam giác AMD = tam giác AND ( c.g.c )

\(\Rightarrow\widehat{AMD}=\widehat{AND}=90^o\)

\(\Rightarrow DN\perp AC\) (1)

Ta có: \(DK\perp BE\) ( gt )  (2)

mà BE // AC  (3)

(1);(2);(3) `=>` N,D,K thẳng hàng

 

 

✎﹏ Pain ッ
13 tháng 3 2023 lúc 19:50

1.Ta có: AB = AC `=>` Tam giác ABC cân 

Xét tam giác ABD và tam giác ACD, có:

AB = AC ( gt )

BD = CD ( gt )

AD: cạnh chung

Vậy tam giác ABD = tam giác ACD ( c.c.c )

Xét tam giác ABC có AB = AC `=>` Tam giác ABC cân

Mà AD là đường trung tuyến `=>` AD cũng là đường cao

`=>

 

Bùi Ngọc Nhi
Xem chi tiết
I love dễ thương
Xem chi tiết
Quandung Le
Xem chi tiết