Tính giá trị biểu thức
A=căn của 16-2x+x2 +căn của 9-2x+x2 biết căn của 16-2x+x2 -căn của 9-2x+x2=1
Cho 16 - 2 x + x 2 - 9 - 2 x + x 2 = 1 .Tính giá trị của biểu thức A = 16 - 2 x + x 2 + 9 - 2 x + x 2
A. A = 6
B. A = 3
C. A = 5
D. A = 7
Tìm GTNN của biểu thức A= Căn x2-2x+1 + Căn (x-4)^2 + Căn (x-6)^2
\(A=\sqrt{x^2-2x+1}+\sqrt{\left(x-4\right)^2}+\sqrt{\left(x-6\right)^2}\)
\(=\sqrt{\left(x-1\right)^2}+\left|x-4\right|+\left|x-6\right|\)
\(=\left|x-1\right|+\left|x-4\right|+\left|x-6\right|\)
\(=\left|x-4\right|+\left(\left|x-1\right|+\left|x-6\right|\right)\)
\(=\left|x-4\right|+\left(\left|x-1\right|+\left|6-x\right|\right)\)
Ta có \(\hept{\begin{cases}\left|x-4\right|\ge0\forall x\\\left|x-1\right|+\left|6-x\right|\ge\left|x-1+6-x\right|=\left|5\right|=5\end{cases}}\)
=> \(\left|x-4\right|+\left(\left|x-1\right|+\left|6-x\right|\right)\ge5\forall x\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-4=0\\\left(x-1\right)\left(6-x\right)\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\1\le x\le6\end{cases}}\Leftrightarrow x=4\)
=> MinA = 5 <=> x = 4
Ta có: \(A=\sqrt{x^2-2x+1}+\sqrt{\left(x-4\right)^2}+\sqrt{\left(x-6\right)^2}\)
\(\Rightarrow A=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-4\right)^2}+\sqrt{\left(x-6\right)^2}\)
\(=\left|x-1\right|+\left|x-4\right|+\left|x-6\right|\)
\(=\left|x-4\right|+\left|x-1\right|+\left|x-6\right|\)
Xét \(\left|x-1\right|+\left|x-6\right|\)ta có:
\(\left|x-1\right|+\left|x-6\right|=\left|x-1\right|+\left|6-x\right|\ge\left|x-1+6-x\right|=\left|5\right|=5\)(1)
Dấu " = " xảy ra \(\Leftrightarrow\left(x-1\right)\left(6-x\right)\ge0\)
TH1: Nếu \(\hept{\begin{cases}x-1< 0\\6-x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 1\\6< x\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 1\\x>6\end{cases}}\)( vô lý )
TH2: Nếu \(\hept{\begin{cases}x-1\ge0\\6-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\6\ge x\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le6\end{cases}}\Leftrightarrow1\le x\le6\)
mà \(\left|x-4\right|\ge0\)(2)
Từ (1) và (2) \(\Rightarrow A\ge5\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x-4=0\\1\le x\le6\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\1\le x\le6\end{cases}}\Leftrightarrow x=4\)
Vậy \(minA=5\)\(\Leftrightarrow x=4\)
Cho pt: x^2-2x-m-1 A, giải pt với m=2 B, tìm điều kiện của m để pt có 2 nghiệm dương x1;x2 TM căn x1 + căn x2=2
a: Sửa đề: PT x^2-2x-m-1=0
Khi m=2 thì Phương trình sẽ là:
x^2-2x-2-1=0
=>x^2-2x-3=0
=>(x-3)(x+1)=0
=>\(\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
b:
\(\text{Δ}=\left(-2\right)^2-4\left(-m-1\right)\)
\(=4+4m+4=4m+8\)
Để phương trình có hai nghiệm dương thì
\(\left\{{}\begin{matrix}4m+8>0\\2>0\\-m-1>0\end{matrix}\right.\Leftrightarrow-2< m< -1\)
\(\sqrt{x_1}+\sqrt{x_2}=2\)
=>\(x_1+x_2+2\sqrt{x_1x_2}=4\)
=>\(2+2\sqrt{-m-1}=4\)
=>\(2\sqrt{-m-1}=2\)
=>-m-1=1
=>-m=2
=>m=-2(loại)
Tính x để các căn thức sau có nghĩa:
căn [ -2x/ x2 -3x + 9]Bài1
A) căn x2-4x+3 =căn 3-2x
B) căn x+7 =5-x
C) căn x2-2x+13 + 2 =2x
Ai giúp em bài này với
Bạn cần viết đề bài bằng công thức toán để được hỗ trợ tốt hơn.
Tìm x để biểu thức sau có nghĩa:
a, căn x2-2x+1
b, căn x+3 + căn x+9
c, căn x-1/x+2
d, căn x-2 + 1/x-5
(phần này dấu căn chỉ đến x-2 thôi nhé)
\(a,\)\(\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}\)
\(đkxđ\Leftrightarrow\sqrt{\left(x-1\right)^2}\ge0\)
\(\Rightarrow x-1\ge0\Rightarrow x\ge1\)
\(b,\)\(\sqrt{x+3}+\sqrt{x+9}\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}x+3\ge0\\x+9\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge-3\\x\ge-9\end{cases}}}\)
\(\Rightarrow x\ge-3\)
\(c,\)\(\sqrt{\frac{x-1}{x+2}}\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}x+2\ne0\\\frac{x-1}{x+2}\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ne-2\\\frac{x-1}{x+2}\ge0\end{cases}}}\)
\(\frac{x-1}{x+2}\ge0\)\(\Rightarrow\orbr{\begin{cases}x-1\ge0;x+2>0\\x-1\le0;x+2< 0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x\ge-1;x>-2\\x\le1;x< 2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x\ge-1\\x< 2\end{cases}}\)
Vậy căn thức xác định khi x \(\ge\)-1 hoawck x < 2
\(d,\)\(\sqrt{x-2}-\frac{1}{x-5}\)
\(đkxđ\Leftrightarrow\orbr{\begin{cases}\sqrt{x-2}xđ\\\frac{1}{x-5}xđ\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-2\ge0\\x-5\ne0\end{cases}\Rightarrow\orbr{\begin{cases}x\ge2\\x\ne5\end{cases}}}\)
Vậy biểu thức xác định \(\Leftrightarrow x\ge2\)và \(x\ne5\)
Bài 6:Tìm giá trị lớn nhất của biểu thức
a) A=-x2+6x-11 b) B=5-8x-x2 c) C=4x-x2+1
Bài 7:Tìm giá trị nhỏ nhất của biểu thức
a) A=x2-6x+11 b) B=x2-2x+y2+4y+8 c) C=x2-4xy+5y2+10x-22y+28
Bài 6:
a) Ta có: \(A=-x^2+6x-11\)
\(=-\left(x^2-6x+11\right)\)
\(=-\left(x-3\right)^2-2\le-2\forall x\)
Dấu '=' xảy ra khi x=3
b) Ta có: \(B=-x^2-8x+5\)
\(=-\left(x^2+8x-5\right)\)
\(=-\left(x^2+8x+16-21\right)\)
\(=-\left(x+4\right)^2+21\le21\forall x\)
Dấu '=' xảy ra khi x=-4
c) Ta có: \(C=-x^2+4x+1\)
\(=-\left(x^2-4x-1\right)\)
\(=-\left(x^2-4x+4-5\right)\)
\(=-\left(x-2\right)^2+5\le5\forall x\)
Dấu '=' xảy ra khi x=2
Bài 7:
a) Ta có: \(x^2-6x+11\)
\(=x^2-6x+9+2\)
\(=\left(x-3\right)^2+2\ge2\forall x\)
Dấu '=' xảy ra khi x=3
(căn x-2/x-1)-(căn x+2/x+2 căn x+1)nhân x2-2x+1/2
gpt x-2x căn (x2+x+1)+(x2+x+1)=4x2