Tìm số nguyên tố x,y,z thỏa mãn:
xy +1 =z
tìm 3 số nguyên tố (x,y,z) thỏa mãn (x+y)(xy+1)=2^z
Tìm các số nguyên tố x,y,z thỏa mãn:
(x+y)(xy+1)=2^y
Bài 1: Tìm các số nguyên x,y thỏa mãn xy+2x-3y=1
Bài 2: Tìm các số nguyên dương x,y,z thỏa mãn (x+1)(y+z)=xyz+2
Bài 1: Tìm các số nguyên x,y thỏa mãn xy+2x-3y=1
Bài 2: Tìm các số nguyên dương x,y,z thỏa mãn (x+1)(y+z)=xyz+2
tìm các số nguyên tố thỏa mãn: x^2+y^2+z^2<xy+3y+2z
Tìm các số nguyên tố x,y,z thỏa mãn x^y+1=z
Tìm các số nguyên tố x,y,z thỏa mãn x^y=z-1
Do các số nguyên tố đều lớn hơn 1
\(\Rightarrow x^y>1\Rightarrow z-1>1\Rightarrow z>2\Rightarrow z\) lẻ
\(\Rightarrow z-1\) chẵn
\(\Rightarrow x^y\) chẵn \(\Rightarrow x\) chẵn \(\Rightarrow x=2\)
Pt trở thành: \(2^y=z-1\Rightarrow z=2^y+1\)
- Với \(y=2\Rightarrow z=5\) là SNT (thỏa mãn)
- Với \(y>2\Rightarrow y\) lẻ, đặt \(y=2k+1\) với \(k\ge1\)
\(\Rightarrow z=2^{2k+1}+1=2.4^k+1\)
Hiển nhiên \(z>3\), đồng thời do \(4\equiv1\left(mod3\right)\Rightarrow4^k\equiv1\left(mod3\right)\Rightarrow2.4^k\equiv2\left(mod3\right)\)
\(\Rightarrow2.4^k+1\equiv0\left(mod3\right)\)
\(\Rightarrow z⋮3\) mà \(z>3\Rightarrow z\) là hợp số (ktm)
Vậy \(\left(x;y;z\right)=\left(2;2;5\right)\)
a) Tìm cặp số x,y nguyên dương thỏa mãn \(x^2+y^2\left(x-y+1\right)-\left(x-1\right)y=22\)
b) Tìm các cặp số x,y,z nguyên dương thỏa mãn \(\dfrac{xy+yz+zx}{x+y+z}=4\)
Tìm x, y, z là số nguyên tố thỏa mãn: x^y + 1 = z?
xy + 1 = z
22 + 1 = 5
Vậy x = 2
y =2
z = 5