Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
le thi thu
Xem chi tiết
Nguyễn Văn Nam
Xem chi tiết
Trần Minh Quang
Xem chi tiết
Thanh Tùng
Xem chi tiết
Nguyễn Thanh Hiền
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 1 2019 lúc 4:54

Ta có: \(x+2y+3x=0\Leftrightarrow x=-\left(2y+3z\right)\)

Lại có: \(2xy+6yz+3xz=0\Leftrightarrow x\left(2y+3z\right)+6yz=0\)

\(\Leftrightarrow-\left(2y+3z\right)\left(2y+3z\right)+6yz=0\Leftrightarrow-\left(2y+3z\right)^2+6yz=0\)

\(\Leftrightarrow\left(2y+3z\right)^2-6yz=0\Leftrightarrow4y^2+12yz+9z^2-6yz=0\)

\(\Leftrightarrow4y^2+6yz+9z^2=0\Leftrightarrow\left(2y+\dfrac{3z}{2}\right)^2+\dfrac{27z^2}{4}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2y+\dfrac{3z}{2}\right)^2=0\\\dfrac{27z^2}{4}=0\end{matrix}\right.\) \(\Rightarrow y=z=0\Rightarrow x=0\)

\(\Rightarrow S=\dfrac{\left(-1\right)^{2019}-1^{2017}+\left(-1\right)^{2015}}{1^{2018}+2.0^{2016}+0^{2014}+2}=\dfrac{-1-1+-1}{1+0+0+2}=\dfrac{-3}{3}=-1\)

An Nguyễn Thúy
Xem chi tiết
Hoàng Phong
25 tháng 9 2018 lúc 20:17

\(x^{2015}+y^{2015}=x^{2016}+y^{2016}=x^{2017}+y^{2017}\)

\(\Rightarrow x=y=1\) hoặc \(x=y=0\)

Với \(x=y=1\)

\(S=2018\left(1^{2018}+1^{2018}\right)\)

\(S=2018.2\)

\(S=4036\)

Với \(x=y=0\)

\(S=2018\left(0^{2018}+0^{2018}\right)\)

\(S=0\)

Trần Hoàng Đạt
Xem chi tiết
Akai Haruma
25 tháng 9 2018 lúc 23:23

Lời giải:

Từ điều kiện đề bài suy ra:

\(\left\{\begin{matrix} x^{2016}+y^{2016}-x^{2017}-y^{2017}=0\\ x^{2017}+y^{2017}-x^{2018}-y^{2018}=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x^{2016}(1-x)+y^{2016}(1-y)=0\\ x^{2017}(1-x)+y^{2017}(1-y)=0\end{matrix}\right.\)

\(\Rightarrow x^{2016}(1-x)(1-x)+y^{2016}(1-y)(1-y)=0\) (trử theo vế)

\(\Leftrightarrow x^{2016}(1-x)^2+y^{2016}(1-y)^2=0\)

Dễ thấy \(x^{2016}(1-x)^2; y^{2016}(1-y)^2\geq 0\) nên để tổng của chúng bằng $0$ thì:
\(x^{2016}(1-x)^2=y^{2016}(1-y)^2=0\)

\(\Rightarrow (x,y)=(0,1), (0,0), (1,1)\) và hoán vị của nó

Thử lại vào đk ban đầu thấy thỏa mãn

Do đó: \(A=x^{2019}+y^{2019}\in\left\{0; 1;2\right\}\)

Hoàng Phong
25 tháng 9 2018 lúc 20:19

\(x^{2016}+y^{2016}=x^{2017}+y^{2017}=x^{2018}+y^{2018}\left(x,y\ge0\right)\)

\(\Rightarrow x=y=1\)

\(\Rightarrow A=1^{2019}+1^{2019}\)

\(\Rightarrow A=2\)

Nguyễn Thái Hà
26 tháng 9 2018 lúc 9:53

{x2016+y2016−x2017−y2017=0x2017+y2017−x2018−y2018=0{x2016+y2016−x2017−y2017=0x2017+y2017−x2018−y2018=0

⇔{x2016(1−x)+y2016(1−y)=0x2017(1−x)+y2017(1−y)=0⇔{x2016(1−x)+y2016(1−y)=0x2017(1−x)+y2017(1−y)=0

⇒x2016(1−x)(1−x)+y2016(1−y)(1−y)=0⇒x2016(1−x)(1−x)+y2016(1−y)(1−y)=0 (trử theo vế)

⇔x2016(1−x)2+y2016(1−y)2=0⇔x2016(1−x)2+y2016(1−y)2=0

Dễ thấy x2016(1−x)2;y2016(1−y)2≥0x2016(1−x)2;y2016(1−y)2≥0 nên để tổng của chúng bằng 00 thì:
x2016(1−x)2=y2016(1−y)2=0x2016(1−x)2=y2016(1−y)2=0

⇒(x,y)=(0,1),(0,0),(1,1)⇒(x,y)=(0,1),(0,0),(1,1) và hoán vị của nó

Do đó: A=x2019+y2019∈{0;1;2}

gjkh
Xem chi tiết
 ✪ B ✪ ả ✪ o  ✪
Xem chi tiết
Dung
21 tháng 10 2016 lúc 13:32

vì giá trị tuyệt đối không nhận giá trị âm nên

x-2015=0;x-2016=0;y2017=0;y-2018=0

=>x=2015;x=2016;y=2017;y=2018

Vì x và y không nhận hai giá trị cùng một lúc nên x y không tồn tại