So sánh 2 số sau bằng cách vận dụng hằng đẳng thức:
A=4(32+1)(34+1).....(364+1) vs B=3128-1
so sánh hai số bằng cách vận dụng hằng đẳng thức:
A=4(32+1)(34+1)...(364+1) và B=3128-1
so sánh hai số sau bằng cách vận dụng hằng đẳng thức
A = 4(32 + 1)(34 + 1)....(364 + 1) và B = 3128 - 1
giúp mình lời giải chi tiết được không ạ, cảm ơn m.n
`A=4(3^2+1)(3^4+1)...(3^64+1)`
`=>2A=(3^2-1)(3^2+1)(3^4+1)...(3^64+1)`
- Ta có:
`(3^2-1)(3^2+1)=3^4-1`
`(3^4-1)(3^4+1)=3^16-1`
`....`
`(3^64-1)(3^64+1)=3^128-1`
Suy ra `2A=3^128-1=B`
`=>A<B`
So sánh 2 số sau bằng cách vận dụng hằng đẳng thức :
a) A = 1999.2001 và B = 20002
b) A = 216 và B = (2 + 1)(22 + 1)(24 + 1)(28 + 1)
c) A = 2011.2013 và B = 20122
d) A = 4(32 + 1)(34 + 1)....(364 + 1) và B = 3128 - 1
Giúp mình vs ạ mai mình học rùi
So sánh 2 số sau bằng cách vận dụng hằng đẳng thức :
a) A = 1999.2001 và B = 20002
b) A = 2^16 và B = (2 + 1)(2^2 + 1)(2^4 + 1)(2^8 + 1)
c) A = 2011.2013 và B = 2012^2
d) A = 4(3^2 + 1)(3^4 + 1)....(3^64 + 1) và B = 3^128 - 1
So sánh hai số bằng cách vận dụng hằng đẳng thức:a) A = 1999.2001 và B = 20002 b) A = 216 và B (2 +1)(22 +1)(24 +1)(28 +1) c) A = 2011.2013 và B = 20122 d) A = 4(32 +1)(34 +1)...(364 +1) và B = 3128 1
so sánh hai số bằng cách vận dụng hằng đẳng thức
A = 4(32+1) (34+1).....(364+1) và B = 3128 -1
\(A=4\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(=\frac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(=\frac{1}{2}\left(3^4-1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(=\frac{1}{2}\left(3^{128}-1\right)< B\)
\(A=4\left(3^2+1\right)\left(3^4+1\right)....\left(3^{64}+1\right)\)
\(\Rightarrow2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(=\left(3^4-1\right)\left(3^4+1\right).....\left(3^{64}+1\right)=\left(3^{64}-1\right)\left(3^{64}+1\right)=3^{128}-1=B\)
\(\Rightarrow A< B\)
1. So sánh 2 số bằng cách vận dụng hằng đẳng thức:
a)A=1999.2001 Vs B=20002 b)A=216 vs B=(2+1)(22+1)(24+1)(28+1)
Các bn giải chi tiết nhé!! mk cần gấp!
a, \(A=1999.2001=\left(2000-1\right)\left(2000+1\right)=2000^2-1< 2000^2=B\)
Vậy A<B
b, \(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1< 2^{16}=A\)
Vậy A>B
So sánh hai số bằng cách vận dụng hằng đẳng thức :
\(A=4.\left(3^2+1\right).\left(3^4+1\right)....\left(3^{64}+1\right)\) và
\(B=3^{128}-1\)
\(A=4\left(3^2+1\right)\left(3^4+1\right)....\left(3^{64}+1\right)\)
\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)....\left(3^{64}+1\right)\)
\(2A=\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(2A=\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{22}+1\right)\left(3^{64}+1\right)\)
\(2A=\left(3^{64}-1\right)\left(3^{64}+1\right)\)
\(2A=3^{128}-1\Rightarrow A=\frac{3^{128}-1}{2}< 3^{128}-1=B\)
Vậy \(A< B\)
Chúc bạn học tốt !!!
A.(32-1)=4.(32-1)(32+1)(34+1)...(364+1)=4.(34-1)(34+1)...(364+1)= ... =4.(3128-1)
<=>8A=4B <=>2A=B =>B>A
Giúp mình với ạ
Tính gt biểu thức bằng cách vận dụng hằng đẳng thức:
a, \(\dfrac{x^3}{27}-\dfrac{x^2}{3}+6x-1\)với x= 303
b, B= 2.( x^3+y^3) - 3.( x^2 + y^2) với x+y= 1
c, C= x^3+y^3+3xy với x+y= 1
Lời giải:
a.
$27A=x^3-9x^2+162x-27=(x-3)^3+135x$
$=(303-3)^3+135.303=27040905$
$A=1001515$
b.
$B=2[(x+y)^3-3xy(x+y)]-3[(x+y)^2-2xy]$
$=2(1-3xy)-3(1-2xy)=2-6xy-3+6xy=-1$
c.
$C=x^3+y^3+3xy(x+y)=(x+y)^3=1^3=1$