tim x biet
x2-10x=-25
tim x,y,z biet 10x=15y=6z va 10x-5y+z=25
10x=15y=6z
=> \(\frac{10x}{60}=\frac{15y}{60}=\frac{6z}{60}\)
=> \(\frac{x}{6}=\frac{y}{4}=\frac{z}{10}\)
= \(\frac{10x}{60}=\frac{5y}{20}=\frac{z}{10}=\frac{10x-5y+z}{60-20+10}=\frac{25}{50}=\frac{1}{2}\)
=> x =3 ; y=2 ; z=5
Tim x:
x^2 - 10x = -25
\(x^2-10x=-25\)
\(x\cdot x-10x=-25\)
\(x\cdot\left(x-10\right)=-25\)
\(=>x;x-10\inƯ\left(-25\right)\)
\(Ư\left(-25\right)\in\left\{-25;-5;-1;1;5;25\right\}\)
Vì cả 2 thừa số là x và x = x nên tìm đc cặp số 5 và 5
=> x = 5
Chả bik lm thế này có đúng k, ai thấy sai bảo mik, hì, ms hok lp 7 thôi
X2-10x=-25
Tim x
Ta có : x2 - 10x = -25
=> x2 - 10x + 25 = 0
=> (x - 5)2 = 0
=> x - 5 = 0
=> x = 5
Ta có \(x^2-10x=-25\)
=>\(x^2-10x+25=0\)
=>\(\left(x-5\right)^2=0\)
=>x-5=0
=>x=5
Vậy x=5
A=\(\frac{x^2-10x+25}{x^2-5x}\)
a)tim đkxđ
tim x
x^2-5x-4(x-5)=0
2x(x+6)=7x+42
x^3-5x^2+x-5=0
x^4-2x^3+10x^2-20x=0
(2x-3)-x^2+10x-25=0
\(x^2-5x-4\left(x-5\right)=0\)
\(\Leftrightarrow\)\(x\left(x-5\right)-4\left(x-5\right)=0\)
\(\Leftrightarrow\)\(\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-5=0\\x-4=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=5\\x=4\end{cases}}\)
Vậy....
\(2x\left(x+6\right)=7x+42\)
\(\Leftrightarrow\)\(2x\left(x+6\right)-7x-42=0\)
\(\Leftrightarrow\)\(2x\left(x+6\right)-7\left(x+6\right)=0\)
\(\Leftrightarrow\)\(\left(x+6\right)\left(2x-7\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x+6=0\\2x-7=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-6\\x=\frac{7}{2}\end{cases}}\)
Vậy......
\(x^3-5x^2+x-5=0\)
\(\Leftrightarrow\)\(x^2\left(x-5\right)+\left(x-5\right)=0\)
\(\Leftrightarrow\)\(\left(x-5\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\)\(x-5=0\)
\(\Leftrightarrow\)\(x=5\)
\(x^4-2x^3+10x^2-20x=0\)
\(\Leftrightarrow\)\(x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\Leftrightarrow\)\(x\left(x-2\right)\left(x^2+10\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Vậy...
Tim x : (x^4+2x^3+10x+25) : (x^2 + 5)=3
tìm giá trị nhỏ nhất của biểu thức P=x^2 + xy + y^2 - 3x -3y+16
Cho phan thuc : \(\dfrac{x^2-10x+25}{x^2-5x}\)
Tim gia tri cua x de phan thuc co gia tri nguyen
\(\dfrac{x^2-10x+25}{x^2-5x}\) <=> \(\dfrac{x^2-5x-5x+25}{x^2-5x}\)
<=> \(\dfrac{x\left(x-5\right)-5\left(x-5\right)}{x\left(x-5\right)}\)
<=> -5(x-5) >0
=> x > 5
\(\dfrac{x^2-10x+25}{x^2-5x}=\dfrac{\left(x-5\right)^2}{x\left(x-5\right)}=\dfrac{x-5}{x}=1-\dfrac{5}{x}\)
để Phân thức có giá trị nguyên <=> x p thuộc ước 5 => giá trị của x
Không có thời gian nên gợi ý nha :
=> Để PT có giá trị nguyên thì x2 - 10x + 25 chia hết cho x2 - 5x nghĩa là tử phải chia hết cho mẫu
Tim x : (x^4+2x^3+10x+25) : (x^2 + 5)=3
tìm giá trị nhỏ nhất của biểu thức P=x^2 + xy + y^2 - 3x -3y+16
Chọn kết quả sai
A. x2-10x+25 = -(x-5)2
B. x2-10x+25 = (5-x)2
C. x2+10x+25 = (x+5)2
D. x2-10x+25 = (x-5)2