So sánh\(\sqrt{25+9}\)và \(\sqrt{25}+\sqrt{9}\)
giúp mình với
bài 5: a) so sánh \(\sqrt{25}+\sqrt{9}\) và \(\sqrt{25+9}\)
b)CMR: a>0,b>0 thì \(\sqrt{a+b}\)<\(\sqrt{a}+\sqrt{b}\)
a)\(\sqrt{25}+\sqrt{9}=5+3=8\)
\(\sqrt{25+9}=\sqrt{36}=6\)
Do \( 8>6\)
\(\Rightarrow\)\(\sqrt{25}+\sqrt{9}>\sqrt{25+9}\)
Ta có:
\((\sqrt{a+b})^{2}=a+b(1)\)
\((\sqrt{a}+\sqrt{b})^{2}=a+2\sqrt{ab}+b(2)\)
\(Theo giả thiết a,b>0 nên 2\sqrt{ab}>0,do đó từ(1) và(2) suy ra: (1)<(2),suy ra ĐPCM\)
So sánh: \(a,\sqrt{25+9}\)và \(\sqrt{25}+\sqrt{9}\)
\(b,\sqrt{25-16}\)và \(\sqrt{25}-\sqrt{16}\)
So sánh:
\(a,\sqrt{25+9}\)và \(\sqrt{25}+\sqrt{9}\)
Ta có:
\(\sqrt{25+9}=\sqrt{34}< \sqrt{36}=6\) \(\left(1\right)\)
\(\sqrt{25}+\sqrt{9}=\sqrt{5^2}+\sqrt{3^2}=5+3=8\) \(\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\sqrt{25+9}< \sqrt{25}+\sqrt{9}\)
\(b,\sqrt{25-16}\) và \(\sqrt{25}-\sqrt{16}\)
Tương tự:)
Bài 26 (trang 16 SGK Toán 9 Tập 1)
a) So sánh $\sqrt{25+9}$ và $\sqrt{25}+\sqrt{9}$ ;
b) Với $a>0$ và $b>0$, chứng minh $\sqrt{a+b}<\sqrt{a}+\sqrt{b}$.
a) Ta có:
+)√25+9=√34+)25+9=34.
+)√25+√9=√52+√32=5+3+)25+9=52+32=5+3
=8=√82=√64=8=82=64.
Vì 34<6434<64 nên √34<√6434<64
Vậy √25+9<√25+√925+9<25+9
b) Với a>0,b>0a>0,b>0, ta có
+)(√a+b)2=a+b+)(a+b)2=a+b.
+)(√a+√b)2=(√a)2+2√a.√b+(√b)2+)(a+b)2=(a)2+2a.b+(b)2
=a+2√ab+b=a+2ab+b
=(a+b)+2√ab=(a+b)+2ab.
Vì a>0, b>0a>0, b>0 nên √ab>0⇔2√ab>0ab>0⇔2ab>0
⇔(a+b)+2√ab>a+b⇔(a+b)+2ab>a+b
⇔(√a+√b)2>(√a+b)2⇔(a+b)2>(a+b)2
⇔√a+√b>√a+b⇔a+b>a+b (đpcm)
a, Ta có : \(\sqrt{25+9}=\sqrt{34}\)
\(\sqrt{25}+\sqrt{9}=5+3=8=\sqrt{64}\)
mà 34 < 64 hay \(\sqrt{25+9}< \sqrt{25}+\sqrt{9}\)
b, \(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\)
bình phương 2 vế ta được : \(a+b< a+2\sqrt{ab}+b\)
\(\Leftrightarrow2\sqrt{ab}>0\)vì \(a;b>0\)nên đẳng thức này luôn đúng )
Vậy ta có đpcm
a) \(\sqrt{25+9}=\sqrt{34}\)
\(\sqrt{25}+\sqrt{9}=5+3=8=\sqrt{64}\)
=> \(\sqrt{25+9}< \sqrt{25}+\sqrt{9}\)
b) Vì a,b > 0, bình phương hai vế ta có :
a + b < a + 2√ab + b
<=> -2√ab < 0 <=> 2√ab > 0 ( đúng vì a,b > 0 )
=> đpcm
a. So sánh \(\sqrt{25+9}\) và \(\sqrt{25}+\sqrt{9};\)
b. Với a > 0 và b > 0, chứng minh \(\sqrt{a+b}< \sqrt{a}+\sqrt{b}.\)
a) Tính √25 + √9 rồi so sánh kết quả với .
Trả lời: < √25 + √9.
b) Ta có: = a + b và
= + 2√a.√b +
= a + b + 2√a.√b.
Vì a > 0, b > 0 nên √a.√b > 0.
Do đó < √a + √b
a) Tính √25 + √9 rồi so sánh kết quả với .
Trả lời: < √25 + √9.
b) Ta có: = a + b và
= + 2√a.√b +
= a + b + 2√a.√b.
Vì a > 0, b > 0 nên √a.√b > 0.
Do đó < √a + √b
so sánh các số sau: a,\(0,5\sqrt{100}-\sqrt{\frac{4}{25}}và\left(\sqrt{1\frac{1}{9}-\sqrt{\frac{9}{16}}}\right):5\)
\(0,5\sqrt{100}-\sqrt{\frac{4}{25}}=0,5.10-\frac{\sqrt{4}}{\sqrt{25}}=5-\frac{2}{5}=\frac{23}{5}=\frac{138}{30}\)
\(\left(\sqrt{1\frac{1}{9}-\sqrt{\frac{9}{16}}}\right):5=\left(\sqrt{\frac{10}{9}-\frac{3}{4}}\right):5=\sqrt{\frac{13}{36}}:5=\frac{\sqrt{13}}{6}:5=\frac{\sqrt{13}}{30}\)
Vì 13 < 138 nên \(\sqrt{13}< 138\Rightarrow\frac{\sqrt{13}}{30}< \frac{138}{30}\)
Vậy \(0,5\sqrt{100}-\sqrt{\frac{4}{25}}>\left(\sqrt{1\frac{1}{9}-\sqrt{\frac{9}{16}}}\right):5\).
So sánh các số sau:
a) \(0,5\sqrt{100}-\sqrt{\frac{4}{25}}v\text{à}\left(\sqrt{1\frac{1}{9}}-\sqrt{\frac{9}{16}}\right):5\)
b) \(\sqrt{25+9}v\text{à}\sqrt{25}+\sqrt{9}\)
So sánh \(0,5\sqrt{100}-\sqrt{\frac{4}{25}}\) và \((\sqrt{\frac{11}{9}-\sqrt{\frac{9}{16}}})\div5\)
Bài 31 (trang 19 SGK Toán 9 Tập 1)
a) So sánh $\sqrt{25-16}$ và $\sqrt{25}-\sqrt{16}$ ;
b) Chứng minh rằng, với $a>b>0$ thì $\sqrt{a}-\sqrt{b}<\sqrt{a-b}$.
a, Ta có \(\sqrt{25-16}=\sqrt{9}=3\)
\(\sqrt{25}-\sqrt{16}=5-4=1\)
Do 3 > 1 nên \(\sqrt{25-16}>\sqrt{25}-\sqrt{16}\)
a) căn 25 - 16 > căn 25 - căn 16
b)Với nên đều xác định
Để so sánh và ta quy về so sánh và .
+) .
+)
.
Do nên
Do
(đpcm)
Vậy .
a) +) .
+) .
Vì nên .
Vậy .
b) Với nên đều xác định.
Để so sánh và ta quy về so sánh và .
+) .
+) .
Do nên
Do
(đpcm)
Vậy .
so sanh
\(\sqrt{25+9}va\sqrt{25}+\sqrt{9}\)