\(\sqrt{25+9}=\sqrt{34}< \sqrt{36}=6\)
\(\sqrt{25}+\sqrt{9}=5+3=8\)
Vì \(6< 8\Rightarrow\sqrt{36}< \sqrt{25}+\sqrt{9}\Rightarrow\sqrt{25+9}< \sqrt{25}+\sqrt{9}\)
\(\sqrt{25+9}=\sqrt{34}< \sqrt{36}=6\)
\(\sqrt{25}+\sqrt{9}=5+3=8\)
Vì \(6< 8\Rightarrow\sqrt{36}< \sqrt{25}+\sqrt{9}\Rightarrow\sqrt{25+9}< \sqrt{25}+\sqrt{9}\)
So sánh các số sau:
a) \(0,5\sqrt{100}-\sqrt{\frac{4}{25}}v\text{à}\left(\sqrt{1\frac{1}{9}}-\sqrt{\frac{9}{16}}\right):5\)
b) \(\sqrt{25+9}v\text{à}\sqrt{25}+\sqrt{9}\)
So sánh \(0,5\sqrt{100}-\sqrt{\frac{4}{25}}\) và \((\sqrt{\frac{11}{9}-\sqrt{\frac{9}{16}}})\div5\)
so sanh
\(\sqrt{25+9}va\sqrt{25}+\sqrt{9}\)
so sanh : \(\sqrt{9+25}\) va \(\sqrt{9}\) +\(\sqrt{25}\)
1. So sánh :
A.0,5.\(\sqrt{100}-\sqrt{\frac{4}{25}}\)và \((\sqrt{1\frac{1}{9}}-\sqrt{\frac{9}{16}})\):5
B. CMR với a,b dương thì \(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\)
2.Tìm x,y,z thỏa mãn đẳng thức:
\(\sqrt{(x-\sqrt{2})^2}+\sqrt{(y+\sqrt{2})^2}+|x+y+z|=0\)
5\(\sqrt{16}\)-4\(\sqrt{9}\)+\(\sqrt{25}\)-0,3\(\sqrt{400}\)
1,5 . \(\sqrt{\dfrac{4}{9}}\) - \(\sqrt{\dfrac{9}{25}}\)
\(0,5\sqrt{100}-\sqrt[]{\frac{4}{25}}va\left(\sqrt{\frac{10}{9}}-\sqrt{\frac{9}{16}}\right):5\)
so sanh
E = \(5\sqrt{16}-4\sqrt{9}+\sqrt{25}-0,3\sqrt{400}\)