cho : \(\frac{a}{b}\)=\(\frac{c}{d}\). hãy chứng tỏ rằng ad=bc
Cho hai số hữu tỉ \(\frac{a}{b}và\frac{c}{d}\left(b>0,d>0\right)\)chứng tỏ rằng
a)Nếu \(\frac{a}{b}< \frac{c}{d}\)thì ad <bc
b)Nếu ad < bc thì \(\frac{a}{b}< \frac{c}{d}\)
a) \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow\frac{ad}{bd}< \frac{bc}{bd}\) (quy đồng mẫu chung)
Vì b,d > 0 nên bd > 0. Do đó ad < bc (đpcm)
b) ad < bc \(\Leftrightarrow\frac{ad}{bd}< \frac{bc}{bd}\) (cùng chia cho bd)
Vì b,d > 0 nên bd > 0. Do đó \(\frac{a}{b}< \frac{c}{d}\) (rút gọn tử và mẫu)
a, Ta có: \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{cb}{db}\Rightarrow ad< cb\)
b, Ta có: \(ad< bc\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow\frac{a}{b}< \frac{c}{d}\)
Cho hai số hữu tỉ \(\frac{a}{b}\)và \(\frac{c}{d}\)(b > 0, d > 0). Chứng tỏ rằng:
a) Nếu \(\frac{a}{b}< \frac{c}{d}\)thì ad < bc;
b) Nếu ad < bc thì \(\frac{a}{b}< \frac{c}{d}\)
a. Nếu : \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a}{b}\times bd< \frac{c}{d}\times bd\left(\text{ do }bd>0\right)\)
\(\Leftrightarrow ad< bc\) vậy ta có điều phải chứng minh
b. nếu \(ad< bc\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Leftrightarrow\frac{a}{b}< \frac{c}{d}\) vậy ta có đpcm
cho 2 số hữu tỉ \(\frac{a}{b}\)và \(\frac{c}{d}\)(b>0,d>0) . chứng tỏ rằng:
a) Nếu \(\frac{a}{b}< \frac{c}{d}\)thì ad< bc ;
b) Nếu ad<bc thì \(\frac{a}{b}< \frac{c}{d}\)
\(a,\frac{a}{b}< \frac{c}{d}=>\frac{ad}{bd}< \frac{bc}{bd}=>ad< bc\left(đpcm\right)\)
\(b,ad< bc=>\frac{ad}{bd}< \frac{bc}{bd}=>\frac{a}{b}< \frac{c}{d}\left(đpcm\right)\)
Zúp mình
Cho hai số hữu tỉ \(\frac{a}{b}và\frac{c}{d}\)(b>0, d>0). Chứng Tỏ rằng
a) Nếu \(\frac{a}{b}< \frac{c}{d}thì\)ab < bc
b) Nếu ad < bc thì \(\frac{a}{b}< \frac{c}{d}\)
bn vào câu hỏi tương tự
có người làm câu này rồi
Cho hai số hữu tỉ \(\frac{a}{b}\) và \(\frac{c}{d}\) (b>0,d>0). Chứng tỏ rằng:
a, Nếu \(\frac{a}{b}\) <\(\frac{c}{d}\) thì ad<bc;
b, Nếu ad<bc thì \(\frac{a}{b}< \frac{c}{d}.\)
a)Do bd>0 (do b>0, d>0) nên nếu \(\frac{a}{b}< \frac{c}{d}\) thì ad<bc
b)Ngược lại, nếu ad<bc thì \(\frac{ad}{bd}< \frac{bc}{bd}\Leftrightarrow\frac{a}{b}< \frac{c}{d}\)
Cho hai số hữu tỉ\(\frac{a}{b}\) và\(\frac{c}{d}\)(b>0,d>0). Chứng tỏ rằng:
a) Nếu \(\frac{a}{b}\)<\(\frac{c}{d}\) thì ad<bc;
b)Nếu ad<bc thì \(\frac{a}{b}\)<\(\frac{c}{d}\)
Cho hai số hữu tỉ \(\frac{a}{b}\)và \(\frac{c}{d}\)(b > 0, d > 0). Chứng tỏ rằng:
a) Nếu \(\frac{a}{b}\)< \(\frac{c}{d}\)thì ad < bc;
b) Nếu ad < bc thì \(\frac{a}{b}\)< \(\frac{c}{d}\)
Giả sử : \(\frac{a}{b}=\frac{c}{d}\) thì ad = bc
Suy ra : ad < bc thì \(\frac{a}{b}< \frac{c}{d}\) (đpcm)
a)
Có \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow ad< bc\) (vì bd > 0)
Vậy \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\) (với b, d > 0)
b)
Có ad < bc và bd > 0
\(\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow\frac{a}{b}< \frac{c}{d}\)
Vậy \(ad< bc\Rightarrow\frac{a}{b}< \frac{c}{d}\) (với b, d > 0)
cho 2 số hữu tỉ \(\frac{a}{b}\) và \(\frac{c}{d}\) (b>0,d>0).chứng tỏ rằng :
a) nếu \(\frac{a}{b}< \frac{c}{d}\) thì \(ad< bc\)
b) nếu \(ad< bc\) thì \(\frac{a}{b}< \frac{c}{d}\)
Cho 2 số hữu tỉ \(\frac{a}{b}\)và \(\frac{c}{d}\)(b >0, d > 0). Chứng tỏ rằng:
a) Nếu \(\frac{a}{b}\)< \(\frac{c}{d}\)thì ad < bc ;
b) Nếu ad < bc thì \(\frac{a}{b}\)< \(\frac{c}{d}\).
Ta có : \(\frac{a}{b}=\frac{ad}{bd},\frac{c}{d}=\frac{bc}{bd}\)
a, Mẫu chung bd > 0 do b > 0 , d > 0 nên nếu \(\frac{ad}{bd}< \frac{bc}{bd}\)thì ad < bc
b, Ngược lại, nếu ad < bc thì \(\frac{ad}{bd}< \frac{bc}{bd}\). Suy ra \(\frac{a}{b}< \frac{c}{d}\)
Ta có thể viết : \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\)