Chứng minh
\(\sqrt{a+4\sqrt{a-2}+2}+\sqrt{a-4\sqrt{a-2}+2}=4\) ( VỚI \(2\le a\le6\))
Chứng minh đẳng thức:
\(\sqrt{a+4\sqrt{a-2}+2}+\sqrt{a-4\sqrt{a-2}+2}=4\) ( với \(2\le a\le6\) ).
\(VT=\sqrt{a+4\sqrt{a-2}+2}+\sqrt{a-4\sqrt{a-2}+2}\)
\(=\sqrt{\left(\sqrt{a-2}\right)^2+4\sqrt{a-2+4}}+\sqrt{\left(\sqrt{a}-2\right)^2-4\sqrt{a-2}+4}\)
\(=\sqrt{\left(\sqrt{a-2}+2\right)^2}+\sqrt{\left(\sqrt{a-2}-2\right)^2}\)
\(=\left|\sqrt{a-2}+2\right|+\left|\sqrt{a-2}-2\right|\)
Nếu \(a=6\) thì \(VT=\sqrt{6-2}+2+\sqrt{6-2}-2=4\)
Nếu \(2\le a< 6\) thì \(VT=\sqrt{a-2}+2+2-\sqrt{a-2}=4\)
Giúp với mn ơi, gấp lắm, hứa cho li ke
Chứng minh đẳng thức:
a)\(\sqrt{23-8\sqrt{7}}-\sqrt{7}=4\)
b)\(\sqrt{a+4\sqrt{a-2}}+\sqrt{a-4\sqrt{a-2}+2}=4\) \(\left(2\le a\le6\right)\)
a,\(\sqrt{23-8\sqrt{7}}-\sqrt{7}=\sqrt{16-8\sqrt{7}+7}-\sqrt{7}=\sqrt{\left(4-\sqrt{7}\right)^2}-\sqrt{7}=\left|4-\sqrt{7}\right|-\sqrt{7}=4-\sqrt{7}-\sqrt{7}=4\)
câu b hình như thiếu đề thì phải bạn xem lại giúp mình
Căn thức bậc hai và hằng đẳng thức |A|= căn A
Giải phương trình: \(\sqrt{x+2\sqrt{x-1}}=2\) Chứng minh: \(\sqrt{a+a\sqrt{a-2}+2}+\sqrt{a-4\sqrt{a-2}+2}=4\) (với \(2\le a\le6\)\(\sqrt{x+2\sqrt{x-1}}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}\right)^2+2\sqrt{x-1}+1}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=2\)
\(\Leftrightarrow\left|\sqrt{x-1}+1\right|=2\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-1}+1=2\\\sqrt{x-1}+1=-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-1}=1\Leftrightarrow x-1=1\Leftrightarrow x=2\\\sqrt{x-1}=-3\left(vl\right)\end{cases}}\)
Vậy phương trình có tập nghiệm \(S=\left\{2\right\}\)
Rút gọn biểu thức:
a) \(\sqrt{a+2\sqrt{a-1}}+\sqrt{a-2\sqrt{a-1}}\)
b) \(\sqrt{a+4\sqrt{a-2}+2}+\sqrt{a-4\sqrt{a-2}+2}\)với \(2\le a\le6\)
Giúp mình nha mình cần gấp :((
a,\(ĐK:a\ge1\)
\(\sqrt{a-1+2\sqrt{a-1}+1}+\sqrt{a-1-2\sqrt{a-1}+1}\)
\(=\sqrt{\left(\sqrt{a-1}+1\right)^2}+\sqrt{\left(\sqrt{a-1}-1\right)^2}\)
\(=\left|\sqrt{a-1}+1\right|+\left|\sqrt{a-1}-1\right|\)
Với \(\sqrt{a-1}\ge1\Leftrightarrow a\ge2\) thì \(\left|\sqrt{a-1}-1\right|=\sqrt{a-1}-1\)
\(\Rightarrow\sqrt{a+2\sqrt{a-1}}+\sqrt{a-2\sqrt{a-1}}=\sqrt{a-1}+1+\sqrt{a-1}-1=2\sqrt{a-1}\)
Với \(0\le\sqrt{a-1}< 1\)\(\Leftrightarrow1\le a< 2\) thì
\(\left|\sqrt{a-1}-1\right|=1-\sqrt{a-1}\)
\(\Rightarrow\sqrt{a+2\sqrt{a-1}}+\sqrt{a-2\sqrt{a-1}}=\sqrt{a-1}+1+1-\sqrt{a-1}=2\)
Câu b tương tự:\(\sqrt{a+4\sqrt{a-2}+2}+\sqrt{a-4\sqrt{a-2}+2}\)
\(=\sqrt{a-2+4\sqrt{a-2}+4}+\sqrt{a-2-4\sqrt{a-2}+4}\)
\(=\sqrt{\left(\sqrt{a-2}+2\right)^2}+\sqrt{\left(\sqrt{a-2}-2\right)^2}\)
\(=\left|\sqrt{a-2}+2\right|+\left|\sqrt{a-2}-2\right|\)
a) \(=\sqrt{a-1+2\sqrt{a-1}+1}+\sqrt{a-1-2\sqrt{a-1}+1}
\)
\(=\sqrt{\left(\sqrt{a-1}+1\right)^2}+\sqrt{\left(\sqrt{a-1}-1\right)^2}=\sqrt{a-1}+1+\sqrt{a-1}-1=2\sqrt{a-1}\)(a>=1)
b)\(=\sqrt{a-2+4\sqrt{a-2}+4}+\sqrt{a-2-4\sqrt{a-2}+4}\)
\(=\sqrt{\left(\sqrt{a-2}+2\right)^2}+\sqrt{\left(\sqrt{a-2}-2\right)^2}=\sqrt{a-2}+2+\sqrt{a-2}-2=2\sqrt{a-2}\)
Giải phương trình sau:
\(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1}=1\)
Rút gọn:
\(\sqrt{a+4\sqrt{a-2}+2}+\sqrt{a-4\sqrt{a-2}+2}\left(2\le a\le6\right)\)
1) pt có 2 dấu bằng.......t bỏ =1 được hong?
ĐK: \(\left\{{}\begin{matrix}x-2\sqrt{x-1}\ge0\\x-1\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-1}\le x\\x\ge1\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}2x-1\le x^2\\x\ge1\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}x^2-2x+1\ge0\\x\ge1\end{matrix}\right.\Leftrightarrow}x\ge1}\)
\(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1}\Leftrightarrow x-2\sqrt{x-1}=x-1\Leftrightarrow4x-4=1\Leftrightarrow x=\dfrac{5}{4}\left(N\right)\)
Kl: x= 5/4
2) \(\sqrt{a+4\sqrt{a-2}+2}+\sqrt{a-4\sqrt{a-2}+2}=\sqrt{\left(a-2\right)+2\cdot2\cdot\sqrt{a-2}+4}+\sqrt{\left(a-2\right)-2\cdot2\cdot\sqrt{a-2}+4}=\sqrt{\left(a-2+2\right)^2}+\sqrt{\left(a-2-2\right)^2}=a+a-4=2a-4\)
chép lại cái đk, ghét nhất cái trò này của H24!! Viết đã đời cuối cùng công cốc !!
\(\left\{{}\begin{matrix}x-2\sqrt{x-1}\ge0\\x-1\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-1}\le x\\x\ge1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4x-4\le x^2\\x\ge1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2-4x+4\ge0\\x\ge1\end{matrix}\right.\)\(\Leftrightarrow x\ge1\)
\(\text{Giải pt:}\)\(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1}=1\)
\(\text{Rút gọn:}\)
\(\sqrt{a+4\sqrt{a-2}+2}+\sqrt{a-4\sqrt{a-2}+2}\left(2\le a\le6\right)\)
1.Chứng minh \(\sqrt{x^2+xy+y^2}+\sqrt{x^2+xz+z^2}\ge\sqrt{y^2+yz+z^2}\)
2. Cho a,b,c>0. Chứng minh \(\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)\left(\frac{1}{\sqrt[3]{a}}+\frac{1}{\sqrt[3]{b}}+\frac{1}{\sqrt[3]{c}}\right)-\frac{a+b+c}{\sqrt[3]{abc}}\le6\)
3. Cho a,b>0 , n là số nguyên dương. Chứng minh \(\frac{1}{\sqrt[n]{a}}+\frac{1}{\sqrt[n]{b}}\ge2\sqrt[n]{\frac{2}{a+b}}\)
4. Cho a,b,c >0. Chứng minh \(\frac{1}{a^2+bc}+\frac{1}{b^2+ca}+\frac{1}{c^2+ba}\le\frac{a+b+c}{2abc}\)
\(\text{Giải pt:}\)
\(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1}=1\)
\(\text{Rút gọn:}\)
\(\sqrt{a+4\sqrt{a-2}+2}+\sqrt{a-4\sqrt{a-2}+2}\left(2\le a\le6\right)\)
cho \(P=\sqrt{a+4\sqrt{a-2}+2}+\sqrt{a-4\sqrt{a-2}+2}\)
chứng minh \(P=\hept{\begin{cases}4\Leftrightarrow2\le a< 6\\2\sqrt{a-2}\Leftrightarrow a>6\end{cases}}\)
Ta có : \(P=\sqrt{a+4\sqrt{a-2}+2}+\sqrt{a-4\sqrt{a-2}+2}\) (ĐKXĐ : \(a\ge2\))
\(=\sqrt{\left(a-2\right)+4\sqrt{a-2}+4}+\sqrt{\left(a-2\right)-4\sqrt{a-2}+4}\)
\(=\sqrt{\left(\sqrt{a-2}+2\right)^2}+\sqrt{\left(\sqrt{a-2}-2\right)^2}=\left|\sqrt{a-2}+2\right|+\left|\sqrt{a-2}-2\right|\)
\(=\sqrt{a-2}+2+\left|\sqrt{a-2}-2\right|\)
Đến đây, ta xét :
Với \(\sqrt{a-2}-2\ge0\Rightarrow a\ge6\), ta có : \(P=\sqrt{a-2}+2+\sqrt{a-2}-2=2\sqrt{a-2}\)Với \(\sqrt{a-2}-2< 0\Rightarrow2\le a< 6\), ta có : \(P=\sqrt{a-2}+2+2-\sqrt{a-2}=4\)Vậy ta có \(P=\hept{\begin{cases}4\Leftrightarrow2\le a< 6\\2\sqrt{a-2}\Leftrightarrow a\ge6\end{cases}}\)