Cho B=1/3+1/3^2+1/3^3+...+1/3^2004+1/3^2005
Chứng minh B<1/2
Cho B=1/3+1/3^2+1/3^3+...+1/3^2004+1/3^2005.Chứng minh B<1/2
\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\)
\(\Leftrightarrow2B=3\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\right)\)
\(\Leftrightarrow2B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2003}}+\frac{1}{3^{2004}}\)
\(\Leftrightarrow2B-B=\left(1+\frac{1}{3}+...+\frac{1}{3^{2004}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2005}}\right)\)
\(\Leftrightarrow B=1-\frac{1}{3^{2005}}\)
\(\Leftrightarrow B=1-\frac{1}{3^{2005}}< \frac{1}{2}\)
Vậy \(B< \frac{1}{2}\) (Đpcm)
\(B=\dfrac{1}{3}+\dfrac{1}{3^2}+..+\dfrac{1}{3^{2004}}+\dfrac{1}{3^{2005}}\\ \)
\(C=3B=1+\dfrac{1}{3}+..+\dfrac{1}{3^{2004}}\)
\(C-B=1-\dfrac{1}{3^{3005}}\)
\(B=\dfrac{1}{2}-\dfrac{1}{2.3^{2005}}< \dfrac{1}{2}\)
\(B=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2005}}\)
\(3B=3\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2005}}\right)\)
\(3B=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2004}}\)
\(3B-B=\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2004}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2005}}\right)\)
\(2B=1-\dfrac{1}{3^{2005}}\)
\(B=\dfrac{1-\dfrac{1}{3^{2005}}}{2}\\ \)
\(\text{Mà }1-\dfrac{1}{3^{2005}}< 1\\ \Rightarrow\dfrac{1-\dfrac{1}{3^{2005}}}{2}< \dfrac{1}{2}\\ \Rightarrow B< \dfrac{1}{2}\left(ĐPCM\right)\)
Vậy \(B< \dfrac{1}{2}\)
B=1/3+1/3^2+1/3^3+...+1/3^2004+1/3^2005 chứng minh rằng B<1/2
Ta có:3B\(\frac{1}{3}+\frac{1}{3}^2+\frac{1}{3}^3+...+\frac{1}{3}^{2003}+\frac{1}{3}^{2004}\)
B=\(\frac{1}{3}+\frac{1}{3}^2+\frac{1}{3}^3+..+\frac{1}{3}^{2003}+\frac{1}{3}^{2004}+\frac{1}{3}^{2005}\)
\(\Rightarrow\)2B=1-\(\frac{1}{3}^{2005}\)
\(\Rightarrow\)B=\(\frac{1-\frac{1}{3}^{2005}}{2}\)
\(\Rightarrow\)B=\(\frac{1-\frac{1}{3}^{2005}}{2}<\frac{1}{2}\)
\(\Rightarrow\)B<\(\frac{1}{2}\)
a)B=1/3+1/3^2+1/3^3+...+1/3^2004+1/3^2005. chứng minh rằng B<1/2
b)B=2+22+33+34+35+...+32010. chứng minh B chia hết cho 7
a)ta có 3B=1+1/3+1/3^2+........+1/3^2003+1/3^2004
B= 1/3+1/3^2+........+1/3^2003+1/3^2004+1/3^2005
suy ra 2B=1-1/3^2005
suy ra B=\(\frac{1-\frac{1}{3}^{2005}}{2}\)
suy ra B=1/2-1/3^2005/2 bé hơn 1/2
từ đấy suy ra B bé hơn 1/2
B=1/3+1/32+1/33+1/34+...+1/32004+1/32005
chứng minh B<1/2
bài 1 : (4đ) 1) Tính : A = 1 phần 2003 + 1 phần 2004 - 1 phần 2005 : 5 phần 2003 + 5 phần 2004 - 5 phần 2005 - ( qua phân số khác rồi nhé ) 2/2002 + 2/2003 - 2/2004 : 3/2002 + 3/2003 - 3/2004 2) Cho B = 1/3+1/3 mũ 2 + 1/3 mũ 3 + 1/3 mũ 4 + ... +1/3 mũ 2015 + 1/3 mũ 2016 . Chứng minh ràng B<1/2
bài 1 : (4đ) 1) Tính : A = 1 phần 2003 + 1 phần 2004 - 1 phần 2005 : 5 phần 2003 + 5 phần 2004 - 5 phần 2005 - 2/2002 + 2/2003 - 2/2004 : 3/2002 + 3/2003 - 3/2004 2) Cho B = 1/3+1/3 mũ 2 + 1/3 mũ 3 + 1/3 mũ 4 + ... +1/3 mũ 2015 + 1/3 mũ 2016 . Chứng minh ràng B<1/2
nguyên một hàng mk đọc ko hỉu????????????
cho B =\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\)chứng minh rằng B < \(\frac{1}{2}\)
\(\Rightarrow3B=3+\frac{1}{3^1}+\frac{1}{3^2}+....+\frac{1}{3^{2004}}\)
\(\Rightarrow3B-B=\left(3+\frac{1}{3^1}+\frac{1}{3^2}+...+\frac{1}{3^{2004}}\right)-\left(\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2005}}\right)\)
\(\Rightarrow2B=3-\frac{1}{3^{2005}}\Rightarrow B=\left(3-\frac{1}{3^{2005}}\right):2\)
\(\Rightarrow\left(3-\frac{1}{3^{2005}}\right):2<\frac{1}{2}\Rightarrow B<\frac{1}{2}\)
3B=1+1/3+1/32+...+1/32004
3B-B=1-1/32005
2B=1-1/32005
B=1/2-1/(32005.2)
Vậy B <1/2
Hùng ơi sai rồi
3B=1+1/3+1/3^2+...+1/3^2004 chứ
Thay số 3 thành 1 vì 1/3*3=1 ko phải bằng 3
Chứng tỏ rằng: B=1/3+1/3^2+1/3^3+1/3^4+...+1/3^2004+1/3^2005<1/2
Ta có :
\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\)
\(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2003}}+\frac{1}{3^{2004}}\)
\(3B-B=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2003}}+\frac{1}{3^{2004}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\right)\)
\(2B=1-\frac{1}{3^{2005}}< 1\)
\(\Rightarrow\frac{2B}{2}=\frac{1-\frac{1}{3^{2005}}}{2}< \frac{1}{2}\)
\(\Rightarrow B< \frac{1}{2}\)
Cho B= \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\) . Chứng minh B<\(\frac{1}{2}\)
Có :
3B = 1 + 1/3 + 1/3^2 + .... + 1/3^2004
2B = 3B - B = ( 1 + 1/3 + 1/3^2 + ..... + 1/3^2004 ) - ( 1/3 + 1/3^2 + 1/3^3 + ..... + 1/3^2005 )
= 1 - 1/3^2005 < 1
=> B < 1 : 2 = 1/2
=> ĐPCM
Tk mk nha
\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\)
\(\Rightarrow3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2003}}+\frac{1}{3^{2004}}\)
\(\Rightarrow3B-B=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2004}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2005}}\right)\)
\(\Rightarrow2B=1-\frac{1}{3^{2005}}< 1\)
\(\Rightarrow B< \frac{1}{2}\)