Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Anh Nhật Tân
Xem chi tiết
Phong Trần Trường
Xem chi tiết
Nguyễn Trần Duy Thiệu
Xem chi tiết
25.Lê Ngọc Phan-8A
Xem chi tiết
Trần Tuấn Hoàng
17 tháng 5 2022 lúc 10:54

\(\left(n^2-3n+1\right)^2-1=\left(n^2-3n\right)\left(n^2-3n+2\right)=n\left(n-3\right)\left(n-1\right)\left(n-2\right)\)

-Theo nguyên lí Dirichlet, trong 4 số tự nhiên liên tiếp luôn có ít nhất 1 số chia hết cho 2, 1 số chia hết cho 3, 1 số chia hết cho 4.

\(\Rightarrow n\left(n-1\right)\left(n-2\right)\left(n-3\right)\) chia hết cho \(2.3.4=24\)

\(\Rightarrowđpcm\)

Trần Tuấn Hoàng
16 tháng 5 2022 lúc 22:12

\(n=1\) thì biểu thức đó ko chia hết cho 24.

Khánh Vân
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 5 2022 lúc 13:10

Bài 2: 

Vì n là số tự nhiên lẻ nên \(n=2k+1\left(k\in N\right)\)

1: 

\(n^2+4n+3\)

\(=n^2+3n+n+3\)

\(=\left(n+3\right)\left(n+1\right)\)

\(=\left(2k+1+3\right)\left(2k+1+1\right)\)

\(=\left(2k+4\right)\left(2k+2\right)\)

\(=4\left(k+1\right)\left(k+2\right)\)

Vì k+1;k+2 là hai số nguyên liên tiếp 

nên \(\left(k+1\right)\left(k+2\right)⋮2\)

=>\(4\left(k+1\right)\left(k+2\right)⋮8\)

hay \(n^2+4n+3⋮8\)

2: \(n^3+3n^2-n-3\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\left(n^2-1\right)\)

\(=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)

\(=\left(2k+1+3\right)\left(2k+1-1\right)\left(2k+1+1\right)\)

\(=2k\left(2k+2\right)\left(2k+4\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Vì k;k+1;k+2 là ba số nguyên liên tiếp

nên \(k\left(k+1\right)\left(k+2\right)⋮3!\)

=>\(k\left(k+1\right)\left(k+2\right)⋮6\)

=>\(8k\left(k+1\right)\left(k+2\right)⋮48\)

hay \(n^3+3n^2-n-3⋮48\)

Trâm Trần
Xem chi tiết
Nguyen Viet Bac
11 tháng 7 2017 lúc 11:30

Theo đề bài ta có :

\(\left(n^2+3n+1\right)^2-1=\left(n^2+3n\right)\left(n^2+3n+2\right)\)

=> \(\left(n^2+3n+1\right)^2-1=n\left(n+3\right)\left(n^2+n+2n+2\right)\)

\(n\left(n+3\right)\left(n\left(n+1\right)+2\left(n+1\right)\right)=n\left(n+3\right)\left(n+2\right)\left(n+1\right)\)

Ta Thấy :

\(n;n+1;n+2;n+3\)là 4 số tự nhiên liên tiếp

Mà tích của 3 số tự nhiên liên tiếp luôn chia hết cho 3

=> \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮3\)

Tích của 4 số tự nhiên liên tiếp cũng chia hết cho 4 vì có 2 số chẵn trong 4 số

=> \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮4\)

Tích của 2 số tự nhiên liên tiếp chia hết cho 2

=> \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮2\)

Vậy \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮24\left(đpcm\right)\)

Nguyễn Lệ Mỹ
Xem chi tiết
Phương Trình Hai Ẩn
8 tháng 7 2018 lúc 15:36

Ta có:

n-6 chia hết cho n-1

=> n-1-5 chia hết cho n-1

=> 5 chia hết cho n-1

=> n-1 thuộc ước của 5 = { 1;-1;5;-5}

Giải từng cái ra nhé

b,

3n+2 chia hết cho n-1

=> 3n-3+5 chia hết cho n-1

=> 3.(2-1) + 5 chia hết cho n-1

=> 5 chia hết cho n-1

giống câu a rồi nhé

c,

3n+24 chia hết cho n-4

=> 3n-12 +36 chia hết cho n-4

=> 3.(2-4) + 36 chia hết cho n-4

=> n-4 thuộc ước của 36 = { 1;-1;2;-2;6;-6;3;-3;4;-4;9;-9;12;-12-36;-36}

Giải ra nhé :)

Nguyễn Ngọc Lan Hương
Xem chi tiết
super saiyan vegeto
5 tháng 11 2016 lúc 22:25

nhân vế sau vs 3 rồi trừ đi là xong ngại giải ra lắm

Ngô Linh
Xem chi tiết