(2x-15)=(2x-15)2
Tìm x , biết:
a) (2x-15)5 = (2x-15)3
b) (7x-11)3 = (-3)2 . 15 + 208
Giúp mình nhanh nhé
a)
\(\left(2x-15\right)^5=\left(2x-15\right)^3\\ \Leftrightarrow\left(2x-15\right)^5-\left(2x-15\right)^3=0\\ \Leftrightarrow\left(2x-15\right)^3.\left[\left(2x-15\right)^2-1\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-15=0\\\left(2x-15\right)^2-1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x-15=0\\\left(2x-15-1\right).\left(2d-15+1\right)=0\end{matrix}\right.\\\Leftrightarrow\left[{}\begin{matrix}2x-15=0\\2x-16=0\\2x-14=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{15}{2}\\x=8\\x=7\end{matrix}\right. \)
b) \(\left(7x-11\right)^3=\left(-3\right)^2.15+208\\ \Leftrightarrow\left(7x-11\right)^3=343=7^3\\ \Leftrightarrow7x-11=7\\ \Leftrightarrow x=\dfrac{18}{7}\)
1) 2x^3 - 8x = 0 2)2x (x - 15) - 4 (x - 15) = 0
1) \(2x^3-8x=0\)
\(\Leftrightarrow2x\left(x^2-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x^2=4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}\)
Vậy \(x\in\left\{0;\pm2\right\}\)
2) \(2x\left(x-15\right)-4\left(x-15\right)=0\)
\(\Leftrightarrow\left(2x-4\right)\left(x-15\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-4=0\\x-15=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=15\end{cases}}\)
Vậy \(x\in\left\{2;15\right\}\)
1
\(2x^3-8x=0\)
\(2x\left(x^2-4\right)=0\)
\(\orbr{\begin{cases}2x=0\\x^2-4=0\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x^2=4\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}\)
2
\(2x\left(x-15\right)-4\left(x-15\right)=0\)
\(\left(2x-4\right)\left(x-15\right)=0\)
\(\orbr{\begin{cases}2x-4=0\\x-15=0\end{cases}}\)
\(\orbr{\begin{cases}2x=4\\x=0+15\end{cases}}\)
\(\orbr{\begin{cases}x=2\\x=15\end{cases}}\)
1) 2x3 - 8x = 0
<=> 2x( x2 - 4 ) = 0
<=> 2x( x - 2 )( x + 2 ) = 0
<=> 2x = 0 hoặc x - 2 = 0 hoặc x + 2 = 0
<=> x = 0 hoặc x = ±2
2) 2x( x - 15 ) - 4( x - 15 ) = 0
<=> ( x - 15 )( 2x - 4 ) = 0
<=> x - 15 = 0 hoặc 2x - 4 = 0
<=> x = 15 hoặc x = 2
Tình hợp lý nếu có thể :
-5/2x 2/11+-5/7x 9/11+15/7
Tìm x biết:
(2x-15)mũ 5=(2x-15)mũ 3
25/7nha
Tìm x biết :
a, (2x - 15)5 = (2x - 15)7
b , (4 - 2x)2 = 4
a) (2x-15)5 = (2x-15)7
(2x-15)5-(2x-15)7 = 0
(2x-15)5-[1-(2x-15)2] = 0
=> (2x-15)5 = 0 hoặc 1-(2x-15)2 = 0
=> 2x-15 = 0 hoặc (2x-15)2 = 1
2x = 0+15 hoặc 2x-15 = 1 hoặc 2x-15 = -1
2x = 15 hoặc 2x = 16 hoặc 2x = 14
x = 15:2 hoặc x = 16:2 hoặc x = 14:2
x = 7,5 hoặc x = 8 hoặc x = 7
Tìm x
a) ( 2x -1)+3/15= 3/2
b) x+ 46/15= 1,5
c) ( -2x +1) + 3/15= 5/3
d) -13/3 -2x -1= 0,6
e) 3x -1/2x = 7/2-3
f) x÷5=6÷7
g) 2x-1/3 = 16/3
a) \(\left(2x-1\right)+\frac{3}{15}=\frac{3}{2}\)
\(\Rightarrow2x-1=\frac{3}{2}-\frac{3}{15}=\frac{13}{10}\)
\(\Rightarrow2x=\frac{13}{10}+1=\frac{23}{10}\)
\(\Rightarrow x=\frac{23}{20}\)
b) \(x+\frac{46}{15}=1,5\)
\(\Rightarrow x+\frac{46}{15}=\frac{3}{2}\)
\(\Rightarrow x=\frac{3}{2}-\frac{46}{15}\)
\(\Rightarrow x=\frac{-47}{30}\)
c) \(\left(-2x+1\right)+\frac{3}{15}=\frac{5}{3}\)
\(\Rightarrow-2x+1=\frac{5}{3}-\frac{3}{15}=\frac{22}{15}\)
\(\Rightarrow-2x=\frac{7}{15}\Rightarrow x=\frac{-7}{30}\)
|2x-5|-7=22
15-|2x+3|=8
(2x+4)(x^2+9)=0
2(x-5)-3(x-4)=-6+15.(-3)
Cho biểu thức:
A=\(\left(\frac{3}{x+5}-\frac{3x-15}{2x-15}.\left(\frac{2x-15}{x^2-25}-2x+15\right)\right):\left(1-x\right)\)
Tìm x để biểu thức A xác định
diều kiện xác định là các mẫu phải khác o; số chia cũng khác o nhé:
ĐK: +) \(x+5\ne0\Rightarrow x\ne-5\)
+) \(2x-15\ne0\Rightarrow x\ne\frac{15}{2}\)
+) \(x^2-25\ne0\Rightarrow\left(x+5\right)\left(x-5\right)\ne0\Rightarrow x\ne\pm5\)
+) \(1-x\ne0\Rightarrow x\ne1\)
Vậy điều kiện xác đinh của A là : \(x\ne1;x\ne\frac{15}{2};x\ne\pm5\)
tìm x biết
a x^2 (2x+15)+4(2x+15)=0
b 5x(x-2)-3(x-2)=0
c 2(x+3)-x^2-3x=0
a
\(x^2\left(2x+15\right)+4\left(2x+15\right)=0\\ \Leftrightarrow\left(2x+15\right)\left(x^2+4\right)=0\\ \Leftrightarrow2x+15=0\left(x^2+4>0\forall x\right)\\ \Leftrightarrow2x=-15\\ \Leftrightarrow x=-\dfrac{15}{2}\)
b
\(5x\left(x-2\right)-3\left(x-2\right)=0\\ \Leftrightarrow\left(x-2\right)\left(5x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-2=0\\5x-3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0+2=2\\x=\dfrac{0+3}{5}=\dfrac{3}{5}\end{matrix}\right.\)
c
\(2\left(x+3\right)-x^2-3x=0\\ \Leftrightarrow2\left(x+3\right)-\left(x^2+3x\right)=0\\ \Leftrightarrow2\left(x+3\right)-x\left(x+3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(2-x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\2-x=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0-3=-3\\x=2-0=2\end{matrix}\right.\)
a: =>(2x+15)(x^2+4)=0
=>2x+15=0
=>2x=-15
=>x=-15/2
b; =>(x-2)(5x-3)=0
=>x=2 hoặc x=3/5
c: =>(x+3)(2-x)=0
=>x=2 hoặc x=-3
B1: Tìm x:
1/ \(\dfrac{x+3}{15}\) = \(\dfrac{1}{3}\) - \(\dfrac{1}{15}\)
2/ (2x - 5) = (x - 3) = 0
3/ (3x - 4) - (2x - 5) = 3
4/ (2x + 1) x (\(\dfrac{1}{2}\)x - 1) = 0
1) PT \(\Leftrightarrow\dfrac{x+3}{15}=\dfrac{4}{15}\) \(\Rightarrow x+3=4\) \(\Rightarrow x=1\)
Vậy ...
2) Mạnh dạn đoán đề là \(\left(2x-5\right)\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-5=0\\x-3=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=3\end{matrix}\right.\)
Vậy ...
3) PT \(\Rightarrow3x-4-2x+5=3\)
\(\Rightarrow x=2\)
Vậy ...
4) PT \(\Rightarrow\left[{}\begin{matrix}2x+1=0\\\dfrac{1}{2}x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=2\end{matrix}\right.\)
Vậy ...
3) Ta có: \(\left(3x-4\right)-\left(2x-5\right)=3\)
\(\Leftrightarrow3x-4-2x+5=3\)
\(\Leftrightarrow x+1=3\)
hay x=2