a) tìm GTLN của biểu thức P= (3x2 + 17): (x2+4)
b) tìm GTNN của biểu thức Q= (x2+4) : x
1. Cho x,y thỏa mãn: x2 + 5y2 - 4xy + 2y = 3. Tìm x,y sao cho x đạt GTLN
2. Cho x,y thỏa mãn: 3x2 + y2 + 2xy + 4 = 7x + 3y
a) Tìm GTNN, GTLN của biểu thức P = x + y
b) Tìm GTNN, GTLN của x
3. Cho x,y thỏa mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y
. Tìm GTLN, GTNN của biểu thức:
1) Tìm GTNN của biểu thức:
a) A = x2 - 7x +11. | b) D = x - 2 + x - 3 . |
c) C = 3 - 4x . x2 +1 | d) B = -5 . x2 - 4x + 7 |
e) x2 - x +1 . M = + x +1 x2 | f) P x 1 x 2 x 3 x 6 . |
2) Tìm GTLN của biểu thức
|
| 2x 2 + 4x + 9 |
|
b) | A = x 2 + 2x + 4 . |
|
| ||||||||||||||||||||
c) C = (x2 - 3x +1)(21+ 3x - x2 ) . | d) D = 6x - 8 . x2 +1 |
1:
a: =x^2-7x+49/4-5/4
=(x-7/2)^2-5/4>=-5/4
Dấu = xảy ra khi x=7/2
b: =x^2+x+1/4-13/4
=(x+1/2)^2-13/4>=-13/4
Dấu = xảy ra khi x=-1/2
e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4
Dấu = xảy ra khi x=1/2
f: x^2-4x+7
=x^2-4x+4+3
=(x-2)^2+3>=3
Dấu = xảy ra khi x=2
2:
a: A=2x^2+4x+9
=2x^2+4x+2+7
=2(x^2+2x+1)+7
=2(x+1)^2+7>=7
Dấu = xảy ra khi x=-1
b: x^2+2x+4
=x^2+2x+1+3
=(x+1)^2+3>=3
Dấu = xảy ra khi x=-1
Tìm GTNN, GTLN của biểu thức: A = (x2 + x +1)/(x2 - x +1)
3A=3(x^2-x+1)/(x^2+x+1)
3A-1=(3x^2-3x+3)/(x^2+x+1)-1
3A-1=(3x^2-3x+3-x^2-x-1)/(x^2+x+1)
3A-1=(2x^2-4x+2)/(x^2+x+1)
3A-1=2(x-1)^2/(x^2+x+1)>=0
=>3A>=1
A>=1/3
=>GTNN của A là 1/3 khi x-1=0 hay x=1
A-3=(x^2-x+1)/(x^2+x+1)-3
A-3=(x^2-x+1-3x^2-3x-3)/(x^2+x+1)
A-3=(-2x^2-4x-2)/(x^2+x+1)
A-3=-2(x+1)^2/(x^2+x+1)<=0
=>A<=3
=>GTLN của A=3 khi x=-1
A=(-x2+x-11)/(x2-2*x+1)
tìm gtln,gtnn của biểu thức giúp e với ạ
Tìm GTNN hoặc GTLN của các biểu thức sau:
a) A = x2 + 3x + 4
b) B = 2x2 - x + 1
c) C = 5x - x2 + 4
d) D = x2 + 5y2 - 2xy + 4y + 3
a: Ta có: \(A=x^2+3x+4\)
\(=x^2+2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{7}{4}\)
\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{3}{2}\)
Bài 6: a)Tìm GTLN, GTNN của biểu thức sau:
a. x2 – 6x +11 b. –x2 + 6x – 11
c) Chứng minh rằng: x2 + 2x + 2 > 0 với x Z
c: \(=\left(x+1\right)^2+1>0\forall x\)
Trả lời:
a, \(x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\forall x\)
Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3
Vậy GTNN của biểu thức bằng 2 khi x = 3
b, \(-x^2+6x-11=-\left(x^2-6x+11\right)=-\left(x^2-6x+9+2\right)=-\left[\left(x-3\right)^2+2\right]\)
\(=-\left(x-3\right)^2-2\le-2\forall x\)
Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3
Vậy GTLN của biểu thức bằng - 2 khi x = 3
c, \(x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\forall x\inℤ\) (đpcm)
Dấu "=" xảy ra khi x + 1 = 0 <=> x = - 1
1. cho x+y = 1 . tìm GTNN của biểu thức C = x2 + y2
2. cho x + 2y =1 . tìm GTNN của biểu thức P = x2 + 2y2
3. cho x + y =1 . tìm GTNN của biểu thức G = 2x2 + y2
4. cho x + y =1 . tìm GTNN của biểu thức H = x2 + 3y2
5. cho 2x + y =1 . tìm GTNN của biểu thức I = 4x2 + 2y2
6. tìm các số thực thõa mãn Pt :
2x2 + 5y2 + 8x - 10y + 13 = 0
Áp dụng Bunyakovsky, ta có :
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)
=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)
=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)
Mấy cái kia tương tự
tìm GTNN của biểu thức :
B=2x2 40x-15
C=x2-4xy+5y2-4y+28
Tìm GTLN của biểu thức :
D= - x2+4x+3
E=x-x2
F=\(\dfrac{5}{x^{2+2x+5}}\)
Mọi người ơi, giúp mình bài này với, cảm ơn mọi người nhiều nha !!!
1.Viết biểu thúc sau dưới dạng bình phương của một tổng: 2xy2+x2y4+1 2 Tính giá trị của biểu thức sau: a) x2-y2 tại x= 87 và y=13 b)x3-3x2+3x-1 tại x=101 c) x3+9x2+27x+27 tại x=97 3. Chứng minh rằng: a) (a+b)(a2-ab+b2)+(a-b)(a2+ab+b2)=2a3 b) a3+b3=(a+b)[(a-b)2+ab] 4.Chứng tỏ rằng: a) x2-6x+10>0 với mọi x b) 4x-x2-5<0 với mọi x 5. Tìm giá trị nhỏ nhất của đa thức: a) P=x2-2x+5 b)Q=2x2-6x c) M=x2+y2-x+6y+10 6.Tìm giá trị lớn nhất của đa thức: a) A=4x-x2+3 b) B=x-x2 c)N=2x-2x2-5 7.Rút gọn các biểu thức sau: a)A=(3x+1)2-2(3x+1)(3x+5)+(3x+5)2 b)B=(a+b+c)2+(a-b+c)2-2(b-c)2 c)D= (a+b+c)2+(a-b-c)2+(b-c-a)2+(c-a-b)2 8. a) Tìm GTNN của A= 4/5+│2x-3│ b) Tìm GTLN của B=1/2(x-1)2+3 9.Cho a+b+c=0 C/m: a3+b3+c3= 3abc Câu hỏi tương tự Đọc thêm
MK KO BT MK MỚI HO C LỚP 6
AI HỌC LỚP 6 CHO MK XIN