Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Linh Trang
Xem chi tiết
Nguyễn Anh Dũng An
Xem chi tiết
kudo shinichi
6 tháng 10 2018 lúc 21:07

\(x^4+y^4+\left(x+y\right)^4\)

\(=x^4+y^4+\left(x^2+2xy+y^2\right)^2\)

\(=x^4+y^4+x^4+6x^2y^2+y^4+4x^3y+4xy^3\)

\(=2.\left(x^2+y^2\right)^2+4xy\left(x^2+y^2\right)+2x^2y^2\)

\(=2.\left(x^2+y^2\right)\left(x^2+y^2+2xy\right)+2x^2y^2\)

\(=2.\left[\left(x^2+y^2\right)\left(x+y\right)^2+x^2y^2\right]\)

Sai thì thôi nhé~

Đoàn Đức Hà
9 tháng 8 2021 lúc 16:58

       \(x^4+y^4+\left(x+y\right)^4\)

\(=x^4+y^4+x^4+4x^3y+6x^2y^2+4xy^3+y^4\)

\(=2x^4+4x^3y+6x^2y^2+4xy^3+2y^4\)

\(=2\left(x^4+2x^3y+3x^2y^2+2xy^3+y^4\right)\)

\(=2\left[\left(x^4+2x^3y+x^2y^2\right)+2\left(x^2+xy\right)y^2+y^4\right]\)

\(=2\left[\left(x^2+xy\right)^2+2\left(x^2+xy\right)y^2+\left(y^2\right)^2\right]\)

\(=2\left(x^2+xy+y^2\right)^2\)

Khách vãng lai đã xóa
Kim Jennie
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
5 tháng 10 2020 lúc 14:21

a) 16x2 - ( x2 + 4 )2

= ( 4x )2 - ( x2 + 4 )2

= [ 4x - ( x2 + 4 ) ][ 4x + ( x2 + 4 ) ]

= ( -x2 + 4x - 4 )( x2 + 4x + 4 )

= [ -( x2 - 4x + 4 ) ]( x + 2 )2

= [ -( x - 2 )2 ]( x + 2 )2

b) ( x + y )3 + ( x - y )3

= [ ( x + y ) + ( x - y ) ][ ( x + y )2 - ( x + y )( x - y ) + ( x - y )2 ]

= ( x + y + x - y )[ x2 + 2xy + y2 - ( x2 - y2 ) + x2 - 2xy + y2 ]

= 2x( 2x2 + 2y2 - x2 + y2

= 2x( x2 + 3y2 )

Khách vãng lai đã xóa
Nguyen Dinh Minh Tu
Xem chi tiết
Hoàng Ngọc Tuyết Nhung
Xem chi tiết
vũ tiền châu
12 tháng 9 2017 lúc 20:24

nâng cao phát triển toán 8 tập 1 mình ngại viết nên bạn vào đó xem nhé

Subin
Xem chi tiết
Yuuki Akastuki
2 tháng 6 2018 lúc 20:46

Xét riêng (x + y)^4 = [(x + y)^2]^2 = [x^2+2xy+y^2]^2 = x^4 +4x^2y^2 + y^4 + 4x^3y + 2x^2y^2+4xy^3
Vậy (x + y)^4 +x^4 + y^4 = x^4 +4x^2y^2 + y^4 + 4x^3y + 2x^2y^2+4xy^3+ x^4 + y^4 
= 2x^4 + 2y^4 + 6x^2y^2 + 4x^3y + 4xy^3 
= 2(x^4 + y^4 + 3x^2y^2 +2 x^3y + 2xy^3) 
= 2(x^4 + y^4 + x^2y^2 + 2x^3y + 2xy^3 + 2x^2y^2) 
= 2(x^2 + xy + y^2)^2

Username2805
Xem chi tiết
zZz Cool Kid_new zZz
1 tháng 7 2019 lúc 17:51

Ây za,mik ko bt có đúng ko nhưng mik thử làm nhé.

Đặt \(x^4+y^4+z^4=a;x^2+y^2+z^2=b;x+y+z=c\)

\(\Rightarrow M=2a-b^2-2bc^2+c^4\)

\(M=2a-2b^2+b^2-2bc^2+c^4\)

\(M=2\left(a-b^2\right)+\left(b-c^2\right)^2\)

Mà:

\(a-b^2=-2\left(x^2y^2+y^2z^2+z^2x^2\right)\)

\(b-c^2=-2\left(xy+yz+zx\right)\)

Khi đó:

\(M=-4\left(x^2y^2+y^2z^2+z^2x^2\right)+4\left(xy+yz+zx\right)^2\)

\(M=-4x^2y^2-4y^2z^2-4z^2x^2+4x^2y^2++4y^2z^2+4z^2x^2+4z^2x^2+8x^2yz+8xy^2z+8xyz^2\)

\(M=8xyz\left(x+y+z\right)\)

Nguyễn Ngọc Linh Nhi
Xem chi tiết
Hoàng Lê Bảo Ngọc
2 tháng 10 2016 lúc 22:47

\(4\left(1+x\right)\left(1+y\right)\left(1+x+y\right)-3x^2y^2=4\left(1+x+y+xy\right)\left(1+x+y\right)-3x^2y^2\)

\(=4\left(1+x+y\right)^2+4xy\left(1+x+y\right)+x^2y^2-4x^2y^2\)

\(=\left[2\left(1+x+y\right)+xy\right]^2-\left(2xy\right)^2=\left(2+2x+2y+xy-2xy\right)\left(2+2x+2y+xy+2xy\right)\)

\(=\left(2+2x+2y-xy\right)\left(2+2x+2y+3xy\right)\)

Nguyễn Ngọc Linh Nhi
2 tháng 10 2016 lúc 22:56

giúp mình câu khác được ko? câu này mình biết làm òi

nguyen thu hoan
3 tháng 10 2016 lúc 19:45

rygghgjgfhgfhgfhgfnb45 - u6 

Mai Thanh
Xem chi tiết
Lê Ng Hải Anh
2 tháng 8 2018 lúc 10:13

\(x^2\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\)

\(=\left(x+4\right)^2\left(x^2-1\right)-\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left[\left(x+4\right)^2-1\right]\)

\(=\left(x-1\right)\left(x+1\right)\left(x+4+1\right)\left(x+4-1\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x+5\right)\left(x-3\right)\)

=.= hok tốt!!