Phân tích các đa thức sau thành nhân tử :
\(^{x^4+y^4+\left(x+y\right)^4}\)
phân tích đa thức sau thành nhân tử: \(\left(x-y\right)^2+4\left(x-y\right)-12\)
Phân tích đa thức thành nhân tử:\(x^4+y^4+\left(x+y\right)^4\)
\(x^4+y^4+\left(x+y\right)^4\)
\(=x^4+y^4+\left(x^2+2xy+y^2\right)^2\)
\(=x^4+y^4+x^4+6x^2y^2+y^4+4x^3y+4xy^3\)
\(=2.\left(x^2+y^2\right)^2+4xy\left(x^2+y^2\right)+2x^2y^2\)
\(=2.\left(x^2+y^2\right)\left(x^2+y^2+2xy\right)+2x^2y^2\)
\(=2.\left[\left(x^2+y^2\right)\left(x+y\right)^2+x^2y^2\right]\)
Sai thì thôi nhé~
\(x^4+y^4+\left(x+y\right)^4\)
\(=x^4+y^4+x^4+4x^3y+6x^2y^2+4xy^3+y^4\)
\(=2x^4+4x^3y+6x^2y^2+4xy^3+2y^4\)
\(=2\left(x^4+2x^3y+3x^2y^2+2xy^3+y^4\right)\)
\(=2\left[\left(x^4+2x^3y+x^2y^2\right)+2\left(x^2+xy\right)y^2+y^4\right]\)
\(=2\left[\left(x^2+xy\right)^2+2\left(x^2+xy\right)y^2+\left(y^2\right)^2\right]\)
\(=2\left(x^2+xy+y^2\right)^2\)
Phân tích các đa thức sau thành nhân tử(sử dụng các hằng đẳng thức)
a)\(16x^2-\left(x^2+4\right)^2\)
b)\(\left(x+y\right)^3+\left(x-y\right)^3\)
a) 16x2 - ( x2 + 4 )2
= ( 4x )2 - ( x2 + 4 )2
= [ 4x - ( x2 + 4 ) ][ 4x + ( x2 + 4 ) ]
= ( -x2 + 4x - 4 )( x2 + 4x + 4 )
= [ -( x2 - 4x + 4 ) ]( x + 2 )2
= [ -( x - 2 )2 ]( x + 2 )2
b) ( x + y )3 + ( x - y )3
= [ ( x + y ) + ( x - y ) ][ ( x + y )2 - ( x + y )( x - y ) + ( x - y )2 ]
= ( x + y + x - y )[ x2 + 2xy + y2 - ( x2 - y2 ) + x2 - 2xy + y2 ]
= 2x( 2x2 + 2y2 - x2 + y2
= 2x( x2 + 3y2 )
Phân tích đa thức thành nhân tử: \(x^4+\left(x+y\right)^4+y^4\)
phân tích đa thức thành nhân tử:\(2\left(x^2+y^4+z^4\right)-\left(x^2+y^2+z^2\right)^2-2\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(x+y+z\right)^4\)
nâng cao phát triển toán 8 tập 1 mình ngại viết nên bạn vào đó xem nhé
Phân tichs đa thức sau thành nhân tử :
\(x^4+y^4+\left(x+y\right)^4\)
Xét riêng (x + y)^4 = [(x + y)^2]^2 = [x^2+2xy+y^2]^2 = x^4 +4x^2y^2 + y^4 + 4x^3y + 2x^2y^2+4xy^3
Vậy (x + y)^4 +x^4 + y^4 = x^4 +4x^2y^2 + y^4 + 4x^3y + 2x^2y^2+4xy^3+ x^4 + y^4
= 2x^4 + 2y^4 + 6x^2y^2 + 4x^3y + 4xy^3
= 2(x^4 + y^4 + 3x^2y^2 +2 x^3y + 2xy^3)
= 2(x^4 + y^4 + x^2y^2 + 2x^3y + 2xy^3 + 2x^2y^2)
= 2(x^2 + xy + y^2)^2
Phân tích đa thức thành nhân tử:
\(M=2\left(x^4+y^4+z^4\right)-\left(x^2+y^2+z^2\right)^2-2\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(x+y+z\right)^4\)
Ây za,mik ko bt có đúng ko nhưng mik thử làm nhé.
Đặt \(x^4+y^4+z^4=a;x^2+y^2+z^2=b;x+y+z=c\)
\(\Rightarrow M=2a-b^2-2bc^2+c^4\)
\(M=2a-2b^2+b^2-2bc^2+c^4\)
\(M=2\left(a-b^2\right)+\left(b-c^2\right)^2\)
Mà:
\(a-b^2=-2\left(x^2y^2+y^2z^2+z^2x^2\right)\)
\(b-c^2=-2\left(xy+yz+zx\right)\)
Khi đó:
\(M=-4\left(x^2y^2+y^2z^2+z^2x^2\right)+4\left(xy+yz+zx\right)^2\)
\(M=-4x^2y^2-4y^2z^2-4z^2x^2+4x^2y^2++4y^2z^2+4z^2x^2+4z^2x^2+8x^2yz+8xy^2z+8xyz^2\)
\(M=8xyz\left(x+y+z\right)\)
Phân tích đa thức thành nhân tử: \(4\left(1+x\right)\left(1+y\right)\left(1+x+y\right)-3x^2y^2\)
\(4\left(1+x\right)\left(1+y\right)\left(1+x+y\right)-3x^2y^2=4\left(1+x+y+xy\right)\left(1+x+y\right)-3x^2y^2\)
\(=4\left(1+x+y\right)^2+4xy\left(1+x+y\right)+x^2y^2-4x^2y^2\)
\(=\left[2\left(1+x+y\right)+xy\right]^2-\left(2xy\right)^2=\left(2+2x+2y+xy-2xy\right)\left(2+2x+2y+xy+2xy\right)\)
\(=\left(2+2x+2y-xy\right)\left(2+2x+2y+3xy\right)\)
giúp mình câu khác được ko? câu này mình biết làm òi
Phân tích các đa thức sau thành nhân tử:
\(x^2\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\)
\(x^2\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\)
\(=\left(x+4\right)^2\left(x^2-1\right)-\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left[\left(x+4\right)^2-1\right]\)
\(=\left(x-1\right)\left(x+1\right)\left(x+4+1\right)\left(x+4-1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x+5\right)\left(x-3\right)\)
=.= hok tốt!!