Giải hệ phương trình
(x -y)2 + 3 (x-y) =4
2x + 3y =12
Cho hệ phương trình 4 x - 3 y = 4 2 x + y = 2 . Biết nghiệm của hệ phương trình (x; y) , tính x.y
A. 2
B. 0
C. -2
D. 1
Cho hệ phương trình 4 x - 3 y = 4 2 x + y = 2 . Biết nghiệm của hệ phương trình (x; y) , tính x.y
A. 2
B. 0
C. -2
D. 1
Cho hệ phương trình 4 x − 3 y = 4 2 x + y = 2 . Biết nghiệm của hệ phương trình là (x; y), tính x.y
A. 2
B. 0
C. −2
D. 1
ĐK: x ≥ 0; y ≥ 0
Ta có
4 x − 3 y = 4 2 x + y = 2 ⇔ 4 x − 3 y = 4 4 x + 2 y = 4 ⇔ 5 y = 0 2 x + y = 2 ⇔ y = 0 2 x = 2
⇔ y = 0 x = 1 (Thỏa mãn)
Vậy hệ phương trình có 1 nghiệm duy nhất (x; y) = (1; 0) ⇒ x.y = 0
Đáp án: B
Giải các hệ phương trình sau bằng cách đặt ẩn số phụ: 4 2 x - 3 y + 5 3 x + y = - 2 3 3 x + y - 5 2 x - 3 y = 21
Giải bất phương trình, hệ phương trình
\(\dfrac{x^2-\left|x\right|-12}{x-3}=2x\)
\(\left\{{}\begin{matrix}y+y^2x=-6x^2\\1+x^3y^3=19x^3\end{matrix}\right.\)
b.
Với \(x=0\) không phải nghiệm
Với \(x\ne0\) hệ tương đương:
\(\left\{{}\begin{matrix}\dfrac{y}{x^2}+\dfrac{y^2}{x}=-6\\\dfrac{1}{x^3}+y^3=19\end{matrix}\right.\)
Đặt \(\left(\dfrac{1}{x};y\right)=\left(u;v\right)\) ta được: \(\left\{{}\begin{matrix}uv^2+u^2v=-6\\u^3+v^3=19\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3uv^2+3u^2v=-18\\u^3+v^3+19\end{matrix}\right.\)
Cộng vế với vế:
\(\left(u+v\right)^3=1\Rightarrow u+v=1\)
Thay vào \(u^2v+uv^2=-6\Rightarrow uv=-6\)
Theo Viet đảo, u và v là nghiệm của:
\(t^2-t-6=0\) \(\Rightarrow\left[{}\begin{matrix}t=-2\\t=3\end{matrix}\right.\) \(\Rightarrow\left(u;v\right)=\left(-2;3\right);\left(3;-2\right)\)
\(\Rightarrow\left(\dfrac{1}{x};y\right)=\left(-2;3\right);\left(3;-2\right)\)
\(\Rightarrow\left(x;y\right)=\left(-\dfrac{1}{2};3\right);\left(\dfrac{1}{3};-2\right)\)
a.
ĐKXĐ: \(x\ne3\)
- Với \(x\ge0\) pt trở thành:
\(\dfrac{x^2-x-12}{x-3}=2x\Rightarrow x^2-x-12=2x^2-6x\)
\(\Leftrightarrow x^2-5x+12=0\) (vô nghiệm)
- Với \(x< 0\) pt trở thành:
\(\dfrac{x^2+x-12}{x-3}=2x\Rightarrow\dfrac{\left(x-3\right)\left(x+4\right)}{x-3}=2x\)
\(\Rightarrow x+4=2x\Rightarrow x=4>0\) (ktm)
Vậy pt đã cho vô nghiệm
Giải hệ phương trình: \(\hept{\begin{cases}\left(3-\frac{5}{y+42x}\right)\sqrt{2y}=4\\\left(3+\frac{5}{y+42x}\right)\sqrt{x}=2\end{cases}}\)
Điều kiện x,y >= 0
Ta thấy x,y = 0 không phải nghiệm của hệ nên xét x,y > 0
\(HPT\Leftrightarrow\hept{\begin{cases}3-\frac{5}{y+42x}=\frac{2\sqrt{2}}{\sqrt{y}}\\3+\frac{5}{y+42x}=\frac{2}{\sqrt{x}}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{5}{y+42x}=\frac{1}{\sqrt{x}}-\frac{\sqrt{2}}{\sqrt{y}}\left(1\right)\\3=\frac{1}{\sqrt{x}}+\frac{\sqrt{2}}{\sqrt{y}}\left(2\right)\end{cases}}\)
Lấy (1) nhân (2) vế theo vế ta được
\(\frac{15}{y+42x}=\frac{1}{x}-\frac{2}{y}\)
\(\Leftrightarrow y^2-84x^2+25xy=0\)
\(\Leftrightarrow\left(y-3x\right)\left(y+28x\right)=0\)
Ta thấy y + 28x >0
\(\Rightarrow y=3x\)
Từ đó thế vào (2) giải tiếp sẽ được nghiệm. Bước còn lại đơn giản nên bạn tự làm nhé
giải hệ phương trình
\(\hept{\begin{cases}x^2\\x^3+3y^2+5x-12=\left(12-y\right)\sqrt{3-x}\end{cases}+y^2+1=2\left(xy-x+y\right)}\)
1 1 5
(4x+7y=16
4x-3y =-24
* y 2
b)
1 1 3
Bài 1. Giải hệ phương trình: a)
x y 2
Bài 2. Giải các phương trình sau:
a) x- 10x + 21 = 0;
b) 5x – 17x + 12 = 0
c) 2x* - 7x? – 4 = 0;
16
d)
x-3 1-x
30
= 3
Bài 3. Cho phương trình x - 2(m + 1)x + 4m = 0 (1)
a) Chứng minh rằng phương trình (1) luôn có nghiệm với mọi m.
X x,
= 4
b) Tìm m để phương trình (1) có hai nghiêm phân biệt thỏa
X X,
Bài 4. Cho phương trình ấn x : x-4x+m-1%3D0
a) Giải phương trình (1) với m= -4
b) Với x1, X2 là nghiệm phương trình (1). Tìm giá trị của m, biết x1- X2 = 2
Bài 5. Một hình chữ nhật có chiều rộng bé hơn chiều dài là 4m, biết diện tích 320m?. Tính chiều
dài, chiều rộng hình chữ nhật.
Bài 6. Đội một gặt lúa trong 4 giờ thì đội hai đến gặt. Hai đội gặt trong 8 giờ thì xong công việc.
Hỏi nếu gặt một mình thì mỗi đội gặt trong bao lâu thì xong, biết nếu gặt một mình đội một gặt
nhiều thời gian hơn đội hai là 8 giờ.
(1)
Bài 7. Cho tam giác ABC có ba góc nhọn nối tiếp (O). Vẽ hai đường cao BE và CF.
a) Chứng minh tứ giác BFEC nội tiếp đường tròn.
b) Chứng minh AFE = ACB
c) Chứng minh AO1EF
Giải các hệ phương trình: 2 x - 3 2 y - 5 = 3 x + 1 3 y - 4 2 x - 3 - 3 y + 2 = - 16
Vậy hệ phương trình đã cho có một nghiệm (x; y) = (7; 6)