tìm n thuộc N* để n^3-n+2 là số chính phương
1) CMR: A= 999...9800...0 1 là số chính phương
n chữ số 9 n c/số 0
2) Tìm n thuộc N để n^2+5 là số chính phương
3) Tìm n thuộc N* để n^2-2n+8 là số chính phương
Tìm n thuộc N để :
a;2^n + 1 là số chính phương
b;3^6 + 3^n là số chính phương
c; n^2 + 2002 là số chính phương
d; n + 1945 và n + 2004 là số chính phương
tìm n thuộc để n2+ 4n + 3 là số chính phương với mọi n thuộc N
Tìm n thuộc N để 1!+2!+3!+...+n! là số chính phương
Bài 3: Tìm số nguyên n để C=4n^2+n+4 là số chính phương.
Bài 4: Tìm số nguyên n để A=n^2+6n+2 là số chính phương.
Bài 5: Tìm số nguyên n để B=n^2+n+23 là số chính phương.
Bài 6: Tìm số tự nhiên n để M=1!+2!+3!+....+n! là số chính phương.
Bài 7: Tìm số nguyên n để N=n^2022+1 là số chính phương.
Bài 1: Tìm n thuộc N để:
A= n^2+9 là số chính phương
B= n^2+2014 là số chính phương
C= n(n+3) là số chính phương
Bài 2: CMR: a^2-1 chia hết cho 24 với a là số nguyên tố >3
Bài 3: CMR: n(2n+1)(7n+1) chia hết cho 6 với mọi n thuộc N
a, Vì n \(\in\)N => n2 là số chính phương
mà 9 = 32 là số chính phương
=> n2 + 9 là số chính phương.
Vậy A = n2 + 9 là số chính phương.
CHÚC BẠN HỌC TỐT!!!!
Vì A=n2+9 là SCP
Đặt A=n2+9=m2 (m thuộc N)
<=> 9=m2-n2
<=> 9=(m-n)(m+n)
Vì n thuộc N => m-n thuộc Z, m+n thuộc N
=> m-n,m+n thuộc Ư(9)
mà m+n>m-n
nên \(\left\{{}\begin{matrix}m+n=9\\m-n=1\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}m=5\\n=4\end{matrix}\right.\)(thỏa mãn)
Vậy A là SCP <=>n=4
tìm n thuộc N để:1!+2!+3!+4!+...+n! là số chính phương
Ta xét : n = 1 1! = 12
n = 2 1! +2! = 3
n=3 1! + 2! + 3! = 9 =32
n = 4 1!+ 2! +3! + 4! =33
Với n >4 thì n! = 1.2.3.........n là mội số chẳn .Nên 1!+2!+......+n! =33 cộng với một số chẳn bằng sốcó chữ số tận cùng của tổng đó là chữ số 3 .Nên nó không phải là số chính phương.
Vậy chỉ có hai giá trị n=1 hoặc n=3 thì 1! +2! + 3! +4! +.......+n!là số chính phương.
Tìm n thuộc N để A=1!+2!+3!+...+n! là số chính phương .
Vì n thuộc N* => n thuộc {1;2;3;4;...}
Ta xét các trường hợp sau :
+ nếu n=1
Khi đó : A=1!=1=12-là số chính phương ( thỏa mãn )
+ nếu n=2
Khi đó : A=1!+2!=1+1x2=3-không là số chính phương (loại)
+Nếu n=3
khi đó : A=1!+2!+3!=1+1x2+1x2x3=1+2+6=9=32-là số chính phương (thỏa mãn)
+Với n>hoặc=4
Ta có : A= 1!+2!+3!+4!=1+1x2+1x2x3+1x2x3x4=1+2+6+24=33 có chữ số tận cùng là 3
Mà 5!;6!;7!;...;n! có chữ số tận cùng là 0
=>A=1!+2!+3!+4!+...+n! có chữ số tận cùng là 3(với n>hoặc = 4)
Mà số chính phương không thể có chữ số tận cùng là 3
Nên A=1!+2!+3!+4!+...+n!không là số chính phương (với n> hoặc =4)
Vậy n thuộc { 1;3 } thì A=1!+2!+3!+...+n! là số chính phương
(+) Với n = 1
=> A=1 ( là số chính phương )
(+) Với n = 2
=> A = 3 ( không phải là số chính phương )
(+) ......
(+) Với \(n\ge4\)
Ta có : 1! + 2! + 3! + 4! = 33 có tận cúng là mà .
Mặt khhacs các số 5! ; 6! ; ... luôn có tận cùng = 0
=> A có tận cung là 3
Mà số chính phương không bao giờ có tận cùng là 3 .
=> n = 1
Vậ n = 1
Với n =1 thì 1! =1=1^2 là số chính phương
Với n=2 thì 1! +2! =3 không là số chính phương
Với n=3 thì 1!+2!+3!=1+1.2 +1.2..3=9=3^2 là số chính phương
n=4 tận cùng là 3 nên không là số chính Phương
Vậy N=1 và 3
tìm n thuộc n để các số sau là số chính phương n^4-n^3-2n+2