rút gọn biểu thức \(A=\left(5-\frac{x\sqrt{y}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}\right)\)\(\left(5+\frac{x\sqrt{y}+y\sqrt{x}}{\sqrt{x}+\sqrt{y}}\right)\)
Rút gọn biểu thức
\(\left(\frac{2x\sqrt{y}+2y\sqrt{x}}{\sqrt{x}+\sqrt{y}}+\frac{x\sqrt{x}+y\sqrt{x}}{\sqrt{x}}\right).\left(\frac{\sqrt{x}-\sqrt{y}}{x-y}\right)^2\)
\(A=\left\{\frac{2\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}+\frac{\sqrt{x}\left(x+y\right)}{\sqrt{x}}\right\}.\left(\frac{\sqrt{x}-\sqrt{y}}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}\right)^2.\)
=> \(A=\left(2\sqrt{xy}+x+y\right).\frac{1}{\left(\sqrt{x}+\sqrt{y}\right)^2}\)
=> \(A=\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{\left(\sqrt{x}+\sqrt{y}\right)^2}=1\)
ĐS: A=1
Rút gọn biểu thức:
A= \(\left(\sqrt{x}+\frac{y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right):\left(\frac{x}{\sqrt{xy}+y}+\frac{y}{\sqrt{xy}-x}-\frac{x+y}{\sqrt{xy}}\right)\)
\(A=\left(\sqrt{x}+\frac{y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right):\left(\frac{x}{\sqrt{xy}+y}+\frac{y}{\sqrt{xy}-x}-\frac{x+y}{\sqrt{xy}}\right)\)
\(=\frac{x+\sqrt{xy}+y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}:\frac{x\left(\sqrt{xy}-x\right)\sqrt{xy}+y\left(\sqrt{xy}+y\right)\sqrt{xy}-\left(x+y\right)\left(\sqrt{xy}+y\right)\left(\sqrt{xy}-x\right)}{\sqrt{xy}\left(\sqrt{xy}+y\right)\left(\sqrt{xy}-x\right)}\)
\(=\frac{x+y}{\sqrt{x}+\sqrt{y}}:\frac{x^2y-x^2\sqrt{xy}+xy^2+y^2\sqrt{xy}-y^2\sqrt{xy}+x^2\sqrt{xy}}{xy^2-x^2y}\)
\(=\frac{x+y}{\sqrt{x}+\sqrt{y}}.\frac{xy^2-x^2y}{xy^2+x^2y}\)
\(=\frac{x+y}{\sqrt{x}+\sqrt{y}}.\frac{xy\left(\sqrt{y}-\sqrt{x}\right)\left(\sqrt{x}+\sqrt{y}\right)}{xy\left(x+y\right)}\)
\(=\sqrt{y}-\sqrt{x}\)
Cho biểu thức A=\(\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{x\sqrt{x}+y\sqrt{y}}\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}-\frac{x\sqrt{x}-y\sqrt{y}}{x-y}\right)\)
a Rút gọn biểu thức A
b so sánh A và \(\sqrt{A}\)
\(\frac{\left(\sqrt{x}+\sqrt{y}\right)}{x\sqrt{x}+y\sqrt{y}}\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}-\frac{x\sqrt{x}+y\sqrt{y}}{x-y}\right)\)
\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}^3+\sqrt{y}^3}\left(\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}-\frac{\sqrt{x}^3+\sqrt{y}^3}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}\right)\)
\(=\frac{1}{x-\sqrt{xy}+y}\left(\sqrt{x}+\sqrt{y}-\frac{x-\sqrt{xy}+y}{\sqrt{x}-\sqrt{y}}\right)\)
\(=\frac{1}{x-\sqrt{xy}+y}\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}-\frac{x-\sqrt{xy}+y}{\sqrt{x}-\sqrt{y}}\right)\)
\(=\frac{1}{x-\sqrt{xy}+y}\left(\frac{x-y-x+\sqrt{xy}-y}{\sqrt{x}-\sqrt{y}}\right)\)
\(=\frac{1}{x-\sqrt{xy}+y}\left(\frac{\sqrt{xy}-2y}{\sqrt{x}-\sqrt{y}}\right)\)
tự làm tiếp nh đến đây dễ rồi
Năm 1930 có sự kiện gì và năm 1945 có sự kiện gì toán lóp 4
mình không trả lời được nên mới hỏi
Cho biểu thức
A= \(\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}+\frac{\sqrt{x^3-\sqrt{y^3}}}{y-x}\right):\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
a, Rút gọn A
Chứng minh A>0
Đề bài
Cho x; y là các số thực dương. Rút gọn mỗi biểu thức sau:
\(A = \frac{{{x^{\frac{5}{4}}}y + x.{y^{\frac{5}{4}}}}}{{\sqrt[4]{x} + \sqrt[4]{y}}}\)
\(B = {\left( {\sqrt[7]{{\frac{x}{y}\sqrt[5]{{\frac{y}{x}}}}}} \right)^{\frac{{35}}{4}}}\)
\(A=\dfrac{x^{\dfrac{5}{4}}y+xy^{\dfrac{5}{4}}}{\sqrt[4]{x}+\sqrt[4]{y}}\\ =\dfrac{xy\left(x^{\dfrac{1}{4}}+y^{\dfrac{1}{4}}\right)}{x^{\dfrac{1}{4}}+y^{\dfrac{1}{4}}}\\ =xy\)
\(B=\left(\sqrt[7]{\dfrac{x}{y}\sqrt[5]{\dfrac{y}{x}}}\right)^{\dfrac{35}{4}}\\= \left(\sqrt[7]{\dfrac{x}{y}\cdot\left(\dfrac{x}{y}\right)^{-\dfrac{1}{5}}}\right)^{\dfrac{35}{4}}\\ =\left(\sqrt[7]{\left(\dfrac{x}{y}\right)^{\dfrac{4}{5}}}\right)^{\dfrac{35}{4}}\\ =\left[\left(\dfrac{x}{y}\right)^{\dfrac{4}{35}}\right]^{\dfrac{35}{4}}\\ =\left(\dfrac{x}{y}\right)^{\dfrac{4}{35}\cdot\dfrac{35}{4}}\\ =\left(\dfrac{x}{y}\right)^1\\ =\dfrac{x}{y}\)
rút gọn biểu thức:
\(A=\frac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left[\left(\frac{1}{x}+\frac{1}{y}\right).\frac{1}{x+y+2\sqrt{xy}}+\frac{2}{\left(\sqrt{x}+\sqrt{y}\right)^3}.\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)\right]\)
\(A=\left(\sqrt{5}-\sqrt{2}\right)^2-\frac{9}{\sqrt{10}-1}+\sqrt{90}\)\(B=\sqrt{2}\left(3\sqrt{2}+\sqrt{3-\sqrt{5}}\right)-\sqrt{5}\)\(C=\left(\frac{5-\sqrt{5}}{\sqrt{5}-1}-\frac{\sqrt{5}+1}{5+\sqrt{5}}\right):\frac{\sqrt{5}+1}{\sqrt{5}}\)\(D=\frac{x\sqrt{y}-y\sqrt{x}+\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}:\frac{x+2\sqrt{xy}+y}{\left(\sqrt{x}+\sqrt{y}\right)^3\left(x+y\right)}vớix,y>0\)
TÍNH HOẶC RÚT GỌN
Rút gọn và tính giá trị biểu thức: a, \(\frac{x+\sqrt{xy}}{y+\sqrt{xy}}\)
b, \(\frac{\sqrt{a}+a\sqrt{b}-\sqrt{b}-b\sqrt{a}}{ab-1}\)
c, \(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)
d,\(\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\left(x\ge0\right)\)
e,\(\frac{x-1}{\sqrt{y}-1}\sqrt{\frac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}\left(x\ne1,y\ne1,y>0\right)\)
\(\(b)\frac{\sqrt{a}+a\sqrt{b}-\sqrt{b}-b\sqrt{a}}{ab-1}\left(a,b\ge0;a,b\ne1\right)\)\)
\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)+\left(a\sqrt{b}-b\sqrt{a}\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab+1}\right)}\)\)
\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)+\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}\)\)
\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{ab}+1\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}\)\)
\(\(=\frac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{ab}-1\right)}\left(a,b\ge0.a,b\ne1\right)\)\)
_Minh ngụy_
\(\(c)\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)\)( tự ghi điều kiện )
\(\(=\frac{x\sqrt{x}+y\sqrt{y}-\left(\sqrt{x}-\sqrt{y}\right)^2.\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)\)
\(\(=\frac{x\sqrt{x}+y\sqrt{y}-\left(x\sqrt{x}+x\sqrt{y}-2x\sqrt{y}-2y\sqrt{x}+y\sqrt{x}+y\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)\)
\(\(=\frac{x\sqrt{y}+y\sqrt{x}}{\sqrt{x}+\sqrt{y}}\)\)( phá ngoặc và tính )
\(\(=\frac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}=\sqrt{xy}\)\)
_Minh ngụy_
\(\(d)\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\left(x\ge0\right)\)\)
\(\(=\sqrt{\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}\)\)
\(\(=\frac{|\sqrt{x}-1|}{|\sqrt{x}+1|}\)\)
\(\(=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)\)( vì \(\(x\ge0\)\))
_Minh ngụy_
Cho biểu thức:
\(A=\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right]:\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)
a, Rút gọn A
b, Biết xy=6. Tìm giá trị của x,y để A có GTNN