\(\left(\sqrt{x}+\frac{y-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\right):\left(\right)\frac{x}{\sqrt{xy}+y}+\frac{y}{\sqrt{xy}-x}-\frac{x+y}{\sqrt{xy}}\left(\right)\)
rút gọn tính khi x=3, y=\(4+2\sqrt{3}\)
CẦN GẤP
P=(\(\frac{x}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)}-\frac{y}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+1\right)}-\frac{xy}{\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)}\))
a. Tìm ĐK của x,y để P có nghĩa
b Rút gọn P
c Tìm các gtri x,y nguyên để P=2
Cho B=\(\left(\frac{\sqrt{x}+\sqrt{y}}{1-\sqrt{xy}}+\frac{\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}\right):\left(1=\frac{x+y+2xy}{1-xy}\right)\)
a) Rút gọn B
b) Tính B tại x=\(\frac{2}{2+\sqrt{3}}\)
c) Tìm GTLN của B
Rút gọn:
a. \(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\) (với x > 0, y > 0)
b.\(\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\) ( với x > 0 )
c. \(4x-\sqrt{8}+\frac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}\) ( với x > -2)
cho biểu thức A = \(\text{[}\sqrt{x}+\frac{y-\sqrt{xy}}{\sqrt{x+\sqrt{y}}}\text{]}:\text{[}\frac{x}{\sqrt{xy}+y}+\frac{y}{\sqrt{xy}-x}-\frac{x+y}{\sqrt{xy}}\text{]}\)
a, Rút gọn A
b, Tính giá trj B khi x=3 , y=4+2\(\sqrt{3}\)
Tính giá trị của biểu thức sau:
\(B=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\frac{2x^2}{\sqrt{x}}+y\sqrt{y}}{x\sqrt{x}+y\sqrt{y}}+\frac{3\sqrt{xy}-3y}{x-y}\) tại x=1997; y=30303
Rút gon
A = \(\left(\sqrt{6x^2-12xy^2+6y^3}+\sqrt{24x^2y}\right):\sqrt{6y}\)
B = \(\frac{\sqrt{343xy^3\left(x-y\right)^2}}{\sqrt{28xy}}\) với x, y>0 , x<y
C= \(\sqrt{\frac{m}{1-2x+x^2}}:\frac{\sqrt{81}}{4m^3\left(x^2-2x+1\right)}\) với m>0 , m khác 1
Rút gọn các biểu thức sau:
a) \(\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\) (x \(\ge\) 0)
b) \(\frac{x-1}{\sqrt{y}-1}\) \(\sqrt{\frac{\left(y-2\sqrt{y}+1\right)}{\left(x-1\right)^4}^2}\) ( x\(\ne\) 1,y\(\ne\)1 và y \(\ge\))
Tim x,y,z :
1)\(\left(2\sqrt{x}-3\right).\left(2+\sqrt{x}\right)+6=0\)
2)\(\sqrt{x-1+2\sqrt{x-2}}+\sqrt{x-1-2\sqrt{x-2}}=0\)
3)\(\sqrt{x^2-4}-2\sqrt{x-2}=0\)
4)\(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}.\left(x+y+z\right)\)
5) xy =\(x\sqrt{y-1}+y\sqrt{x-1}\)
6)\(x\sqrt{y-1}+2y\sqrt{x-1}=\frac{3xy}{2}\)