chứng tỏ răng:B=1/2^2+1/3^2+1/4^2=1/5^2+1/6^2 +1/7^2+1/8^2<1
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Bài 1:Chứng tỏ rằng:B=\(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+\(\dfrac{1}{4^2}\)+\(\dfrac{1}{5^2}\)+\(\dfrac{1}{6^2}\)+\(\dfrac{1}{7^2}\)\(\dfrac{1}{8^2}\)<1
Bài 2:Chứng tỏ rằng:E=\(\dfrac{3}{4}\)+\(\dfrac{8}{9}\)+\(\dfrac{15}{16}\)+...+\(\dfrac{2499}{2500}\)<1
Bài 3:Chứng tỏ rằng:1<\(\dfrac{2011}{2020^2+1}\)+\(\dfrac{2021}{2020^2+2}\)+\(\dfrac{2021}{2020^3+3}\)+...+\(\dfrac{2021}{2020^3+2020}\)< 2
1:
\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}\)
...
\(\dfrac{1}{8^2}< \dfrac{1}{7\cdot8}\)
=>\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{8^2}< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+..+\dfrac{1}{7\cdot8}\)
=>\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}=\dfrac{7}{8}< 1\)
chứng tỏ rằng:B=1/2^2 + 1/3^2 + 1/4^2 + 1/5^2 + 1/6^2 + 1/7^2 + 1/8^2 < 1
=>B<1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8
=>B<1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8
=>B<1-1/8=7/8<1
Vậy B<1
k cho mk nha
Chứng tỏ rằng :B=1/2^2+1/3^2+1/4^2+1/5^2+1/6^2+1/7^2+1/8^2<1
chứng tỏ rằng B= 1/2 ^ 2+1/3 ^ 2 + 1/4 ^ 2+1/5 ^ 2 +1/6 ^ 2+ 1/7 ^ 2+1/8 ^ 2< 1
Ta có:
1/2^2 < 1/1.2
1/3^2 < 1/2.3
1/4^2< 1/3.4
........................
1/8^2<1/7.8
Vậy B < 1/1.2+1/2.3+1/3.4+....+1/7.8
B< 1-1/8
B<7.8<1
=> B<1
chứng tỏ rằng B=1/2^2+1/3^2+1/4^2+1/5^2+1/6^2+1/7^2+1/8^2<1
Giải:
Dễ thấy:
\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\)
\(.................\)
\(\dfrac{1}{8^2}=\dfrac{1}{8.8}< \dfrac{1}{7.8}\)
Cộng vế theo vế ta được:
\(B< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{7.8}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}\)
\(=1-\dfrac{1}{8}=\dfrac{7}{8}< 1\)
Vậy \(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{8^2}< 1\) (Đpcm)
Ta có:
\(\dfrac{1}{2^2}< \dfrac{1}{1.2},\dfrac{1}{3^2}< \dfrac{1}{2.3},...,\dfrac{1}{8^2}< \dfrac{1}{7.8}\)
\(B< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{7.8}\)
\(B< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}\)
\(B< 1-\dfrac{1}{8}=\dfrac{7}{8}\)
\(\Rightarrow B< 1\)
chứng tỏ rằng B= 1/2^2 + 1/3^2 +1/4^2+1/5^2+1/6^2+1/7^2+1/8^2 <1
\(B< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}=\frac{2-1}{1.2}+......+\frac{8-7}{7.8}\)
\(=1-\frac{1}{2}+\frac{1}{2}-....-\frac{1}{8}=1-\frac{1}{8}< 1\)
ta có điều phải chứng minh
Ta có : 1/2^2 < 1/1.2
1/3^2 < 1/2.3
1/4^2 < 1/3.4
...
1/8^2 < 1/7.8
=> B < 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/7.8
B < 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/7 - 1/8
B < 1 - 1/8 < 1
=> B < 1 (đpcm)
Ta có: \(\frac{1}{2^2}< \frac{1}{1\cdot2};\frac{1}{3^2}< \frac{1}{2\cdot3};\frac{1}{4^2}< \frac{1}{3\cdot4};....;\frac{1}{8^2}< \frac{1}{7\cdot8}\)
\(\Rightarrow B< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{7\cdot8}\)
\(\Rightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}\)
\(\Rightarrow B< 1-\frac{1}{8}< 1\left(đpcm\right)\)
Chứng tỏ rằng B = \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+\dfrac{1}{8^2}< 1\)
Ta có
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
...............
\(\dfrac{1}{8^2}< \dfrac{1}{7.8}\)
=> B < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+....+\dfrac{1}{7.8}\)
B < \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{7}-\dfrac{1}{8}\)
B < \(1-\dfrac{1}{8}< 1\) (Do \(\dfrac{1}{8}>0\))
Vậy.....
Chứng tỏ rằng: B= 1/2 mũ 2 +1/3 mũ 2 +1/4 mũ 2 + 1/5 mũ 2 + 1/6 mũ 2+ 1/7 mũ 2 + 1/8 mũ 2 <1.
Ta có 1/22<1/1.2
1/32<1/2.3
1/42<1/3.4
................
1/8²<1/7.8
=>B<1/1.2+1/2.3+1/3.4+...+1/7.8
=>B<1-1/2+1/2-1/3+1/3-1/4+...+1/7-1/8
=>B<1-1/8
Vậy B < 1
Ta có 1/22<1/1.2
1/32<1/2.3
1/42<1/3.4
................
1/8²<1/7.8
=>B<1/1.2+1/2.3+1/3.4+...+1/7.8
=>B<1-1/2+1/2-1/3+1/3-1/4+...+1/7-1/8
=>B<1-1/8
Vậy B < 1 ai đồng tình với mình ko
Chứng tỏ rằng : B = 1/2 mũ 2 + 1/3 mũ 2 + 1/4 mũ 2 + 1/ 5 mũ 2 + 1/6 mũ 2 +1/7 mũ 2 + 1/8 mũ 2 < 1