Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Linh nguyễn
Xem chi tiết
Nguyễn Minh Quân
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 3 2023 lúc 22:27

a: Xét (O) có

ΔBEA nội tiếp

BA là đường kính

=>ΔBEA vuông tại E

góc MCA+góc MEA=90+90=180 độ

=>MCAE nội tiếp

b: góc BFA=1/2*sđ cung BA=1/2*180=90 độ

Xét ΔBFA vuông tại F và ΔBCN vuông tai C có

góc B chung

=>ΔBFA đồng dạng với ΔBCN

=>BF/BC=BA/BN

=>BC*BA=BF*BN

Xét ΔBEA vuông tại E và ΔBCM vuông tại C có

góc EBA chung

=>ΔBEA đồng dạng với ΔBCM

=>BE/BC=BA/BM

=>BC*BA=BE*BM=BF*BN

Nguyễn Thảo
Xem chi tiết
Nguyễn Thảo
9 tháng 7 2021 lúc 9:10

Giúp mình 😗

Hiển Dươmg
Xem chi tiết
Lê Minh Ngọc
Xem chi tiết
s2 Lắc Lư  s2
23 tháng 4 2016 lúc 21:38

khó kinh,,,

s2 Lắc Lư  s2
23 tháng 4 2016 lúc 21:43

tự nhiên vẽ ra điểm I chả liên quan j

Tuấn Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 3 2023 lúc 23:40

góc ADB=1/2*180=90 độ

góc ANB=góc ADB=90 độ

Xét ΔEAB có

BD,AN,EC là đường cao

BD cắt EC tại F

=>F là trựctâm

góc ADF+góc ACF=180 độ

=>ADFC nội tiếp

góc EDF+góc ENF=180 độ

=>EDFN nội tiếp

góc CDF=góc CAF

góc NDF=góc ECB

mà góc CAF=góc ECB

nên góc CDF=góc NDF

=>DF là phân giác của góc NDC(1)

góc DNF=góc AEC

góc CNF=góc DBA

góc AEC=góc DBA

=>góc DNF=góc CNF

=>NF là phân giác của góc DNC(2)

Từ (1), (2) suy ra F là tâm đường tròn nội tiêp ΔCND

Lục Ninh
Xem chi tiết
Đỗ Thị Minh Ngọc
12 tháng 4 2022 lúc 0:16

Tham khảo 

https://asknlearn247.com/question/cho-duong-tron-o-r-duong-kinh-ab-co-dinh-tren-tia-doi-cua-tia-ab-lay-diem-c-sao-cho-ac-r-qua-c-k-2018212/

Ngọc Nam Nguyễn k8
12 tháng 4 2022 lúc 0:20

a, Xét (O), đường kính AB có: M ∈ (O)

⇒ AMB^=90° (góc nội tiếp chắn nửa đường tròn)

⇒ AM ⊥ BP ⇒ AMP^=90°

PC ⊥ AC (gt) ⇒ ACP^=90° Hay BCP^=90°

Xét tứ giác ACPM có: AMP^+ACP^=90°+90°=180°

Mà hai góc này ở vị trí đối nhau

⇒ Tứ giác ACPM nội tiếp đường tròn đường kính AP

b, Xét ΔBMA và ΔBCP có:

BMA^=BCP^=90° 

PBC^: góc chung

⇒ ΔBMA ~ ΔBCP (g.g)

⇒ BMBC=BABP (các cặp cạnh tương ứng tỉ lệ)

⇒ BM.BP = BA.BC

Có BC=BA+CA=2R+R=3R

⇒ BM.BP=BA.BC=2R.3R=6R²

c, Tứ giác ACPM nội tiếp đường tròn đường kính AP (cmt)

⇒ CPA^=CMA^ (góc nội tiếp chắn CA⏜)

Hay CPQ^=CMA^

Xét (O) có: A, M, N, Q ∈ (O)

⇒ Tứ giác AMNQ nội tiếp (O)

⇒ AQN^+AMN^=180° (tổng hai góc đối trong tứ giác nội tiếp)

Mà AMC^+AMN^=180° (hai góc kề bù)

⇒ AQN^=CMA^ Hay PQN^=CMA^

Mà CPQ^=CMA^ (cmt)

⇒ CPQ^=PQN^

Mà hai góc này ở vị trí so le trong so PQ cắt CP và NQ

⇒ CP // NQ

d, Gọi D là trung điểm của BC, kẻ đường thẳng qua Q song song với MO cắt AO tại I

Mà BC cố định ⇒ D cố định

Có O, D cố định ⇒ I cố định

Xét ΔMBC có: G là trọng tâm của ΔMBC (gt)

⇒ DGDM=13

Xét ΔOMD có: GI // MO (cách vẽ)

⇒ DGDM=GIMO (hệ quả định lí Talet)

⇒ GIMO=13⇒GI=MO3=R3

Mà R không đổi

⇒ G luôn cách I một khoảng bằng R3

⇒ Khi M di động, G luôn thuộc đường tròn tâm I, bán kính 

Ngọc Nam Nguyễn k8
12 tháng 4 2022 lúc 0:21

a, Xét (O), đường kính AB có: M ∈ (O)

⇒ ˆAMB=90°AMB^=90° (góc nội tiếp chắn nửa đường tròn)

⇒ AM ⊥ BP ⇒ ˆAMP=90°AMP^=90°

PC ⊥ AC (gt) ⇒ ˆACP=90°ACP^=90° Hay ˆBCP=90°BCP^=90°

Xét tứ giác ACPM có: ˆAMP+ˆACP=90°+90°=180°AMP^+ACP^=90°+90°=180°

Mà hai góc này ở vị trí đối nhau

⇒ Tứ giác ACPM nội tiếp đường tròn đường kính AP

b, Xét ΔBMA và ΔBCP có:

ˆBMA=ˆBCP=90°BMA^=BCP^=90° 

ˆPBCPBC^: góc chung

⇒ ΔBMA ~ ΔBCP (g.g)

⇒ BMBC=BABPBMBC=BABP (các cặp cạnh tương ứng tỉ lệ)

⇒ BM.BP = BA.BC

Có BC=BA+CA=2R+R=3R

⇒ BM.BP=BA.BC=2R.3R=6R²

c, Tứ giác ACPM nội tiếp đường tròn đường kính AP (cmt)

⇒ ˆCPA=ˆCMACPA^=CMA^ (góc nội tiếp chắn CACA⏜)

Hay ˆCPQ=ˆCMACPQ^=CMA^

Xét (O) có: A, M, N, Q ∈ (O)

⇒ Tứ giác AMNQ nội tiếp (O)

⇒ ˆAQN+ˆAMN=180°AQN^+AMN^=180° (tổng hai góc đối trong tứ giác nội tiếp)

Mà ˆAMC+ˆAMN=180°AMC^+AMN^=180° (hai góc kề bù)

⇒ ˆAQN=ˆCMAAQN^=CMA^ Hay ˆPQN=ˆCMAPQN^=CMA^

Mà ˆCPQ=ˆCMACPQ^=CMA^ (cmt)

⇒ ˆCPQ=ˆPQNCPQ^=PQN^

Mà hai góc này ở vị trí so le trong so PQ cắt CP và NQ

⇒ CP // NQ

d, Gọi D là trung điểm của BC, kẻ đường thẳng qua Q song song với MO cắt AO tại I

Mà BC cố định ⇒ D cố định

Có O, D cố định ⇒ I cố định

Xét ΔMBC có: G là trọng tâm của ΔMBC (gt)

⇒ DGDM=13DGDM=13

Xét ΔOMD có: GI // MO (cách vẽ)

⇒ DGDM=GIMODGDM=GIMO (hệ quả định lí Talet)

⇒ GIMO=13⇒GI=MO3=R3GIMO=13⇒GI=MO3=R3

Mà R không đổi

⇒ G luôn cách I một khoảng bằng R3R3

⇒ Khi M di động, G luôn thuộc đường tròn tâm I, bán kính R3R3

Thảo Nguyễn
Xem chi tiết
Giản Nguyên
25 tháng 3 2018 lúc 14:19

a, ta có: góc AEI = 90o (góc nội tiếp chắn nửa đường tròn) => EI\(\perp\)AK tại E và AH\(\perp\)KI tại H (gt)

chúng cắt nhau tại B => B là trực tâm. => KB vuông góc AI (đpm)

b, ta có: góc ECA = góc EBA ( cùng chắn cung AE) mà góc EBA= góc HBI (hai góc đối đỉnh) (4)

ta lại có: góc HBI + góc HIB =90o (tổng 3 góc trong một tam giác) (3)

=> góc ECA + góc HIB = 90o (1)

Xét tam giác CEI vuông tại E nên: góc EKI + góc HIB =90o (2)

Từ (1) và (2) => góc ECA = góc EKI 

=> tứ giác EKNC là tứ giác nội tiếp ) (đpcm)

c,Ta có: góc EAB + góc EBA = 90và từ (3), (4) => góc EAB = góc BIH

mà góc EAB = góc BEN ( bằng 1/2 sđ cung EB)

=> góc BIH = góc BEN=> tam giác ENI cân tại N=> EN =NI (*)

Tương tự, ta có góc K + góc KAH = 90o

góc KEN + góc NEB =90o mà góc KAH = góc NEB (c.m.t)  => góc KEN = góc K   => tam giác KNE cân tại N => NK = NE (**)

từ (*) và (**) => NK = NI hay N là trung điểm KI ( đpcm)

Thảo Nguyễn
20 tháng 1 2018 lúc 23:20
CÁC BẠN GIÚP MÌNH VỚI
Giản Nguyên
25 tháng 3 2018 lúc 13:29

trả lời đúng thì k cho mình chứ?

Thuhuyen Le
Xem chi tiết