Cho nửa (O) đường kính AB . Gọi C là điểm cố định thuộc đoạn thẳng OB . Kẻ đường thẳng d vuông góc với AB tại điểm C cắt nửa (O) tại M . Trên cung nhỏ MB lấy điểm N bất kì , tia AN cắt d tại điểm F , tia BN cắt d tại điểm E . Đường thẳng AE cắt nửa (O) tại D . Chứng minh F làm tâm đường tròn nội tiếp ΔCDN
góc ADB=1/2*180=90 độ
góc ANB=góc ADB=90 độ
Xét ΔEAB có
BD,AN,EC là đường cao
BD cắt EC tại F
=>F là trựctâm
góc ADF+góc ACF=180 độ
=>ADFC nội tiếp
góc EDF+góc ENF=180 độ
=>EDFN nội tiếp
góc CDF=góc CAF
góc NDF=góc ECB
mà góc CAF=góc ECB
nên góc CDF=góc NDF
=>DF là phân giác của góc NDC(1)
góc DNF=góc AEC
góc CNF=góc DBA
góc AEC=góc DBA
=>góc DNF=góc CNF
=>NF là phân giác của góc DNC(2)
Từ (1), (2) suy ra F là tâm đường tròn nội tiêp ΔCND