Cmr da thuc sau ko co ngiem
B=(x-5)^2+4
cmr da thuc sau khong co nghiem : \(x^{10}-x^5+x^2-x+1\)
cho da thuc f(x) t/m dieu kien:
x.f(x-2)=(x-4).f(x)
CMR : da thuc f(x) co it nhat 2 nghiem
cho da thuc f(x)= -2+x^4+2x^2-3x^3+4x^4-5x^4+3x^3+3 chung minh rang da thuc f(x) ko co nghiem tai moi gia tri cua x
Chia da thuc f(x) cho da thuc (x+1) co so du la 5. Chia da thuc f(x) cho da thuc \(x^2+1\) co so du la 2x+3. Tim so du trong phep chia da thuc ?
cho da thuc :A(x)=x^2-x+1
a,cmr: a(x)>0 voi moi gtri cua x
b, da thuc A(x) co nghiem hay khong ? vi sao?
a) = x(x-1) +1
x(x-1) = 0 khi x = 0; x=1
còn lại x(x - 1) luôn >0
vậy A(x) >0 với mọi x
b) A(x) vô nghiệm vì A(x) luôn .> 0 (cmt)
cm: da thuc M[x]=\(^{2x^4+4x^2+6}\) ko co nghiem
Ta có:\(x^4\)≥0 với mọi x
⇒2\(x^4\)≥0 với mọi x
Tương tự 4\(x^2\)≥0 với mọi x
⇒M≥0+0+6 với mọi x
⇒Đa thức M không có nghiệm
Cho da thuc P(x)=2(x-3)2 +5
Chung minh rang da thuc da thuc da cho khong co nghiem
Ta cần tìm x sao cho: \(P\left(x\right)=2\left(x-3\right)^2+5=0\)
Ta có: \(P\left(x\right)=2\left(x-3\right)^2+5\ge5>0\forall x\)
Vậy đa thức vô nghiệm.(đpcm)
cmr khong co da thuc f(x) nao he so nguyen co the co gia tri f(7)=5 va f(15)=9
Đặt \(f\left(x\right)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0\)\(\left(a_i\in Z\right)\)
Ta có: \(f\left(15\right)=a_n.15^n+a_{n-1}.15^{n-1}+...+a_1.15+a_0=9\)
\(f\left(7\right)=a_n.7^n+...+a_1.7+a_0=5\)
\(\Rightarrow\left(15^n-7^n\right)a_n+\left(15^{n-1}-7^{n-1}\right).a_{n-1}+...+\left(15-7\right)a_1=9-5\)
Mà \(15^k-7^k=\left(15-7\right)\left(15^{k-1}+15^{k-2}.7+...+15^i.7^{k-1-i}+..+15.7^{k-2}+7^{k-1}\right)=8X_k\)
\(\left(X_K\in Z\right)\)
\(\Rightarrow8X_n.a_n+8X_{n-1}.a_{n-1}+...+8a_1=4\)
\(\Rightarrow X_na_n+X_{n-1}a_{n-1}+...+X_1a_1=\frac{1}{2}\text{ (vô lí do }X_k,\text{ }a_k\in Z\text{)}\)
Vậy không tồn tại đa thức hệ số nguyên thỏa f(7) = 5; f(15) = 9.
cmr da thuc P(x)co it nhat 2 nghiem: x.P(x+2)-(x+3)P(x-1)=0