Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Hiếu
Xem chi tiết
Akai Haruma
14 tháng 10 2021 lúc 21:05

Lời giải:

a.

PT $\Leftrightarrow (x+3)^2=2016^{2020}-17^{91}+9$

Ta thấy: $2016^{2020}-17^{91}+9\equiv 0-(-1)^{91}+0\equiv -1\equiv 2\pmod 3$

Mà 1 scp thì chia $3$ chỉ dư $0$ hoặc $1$ nên pt vô nghiệm.

b.

$x^2=2016(y-1)^2-2017^{2019}\equiv 0-1^{2019}\equiv 3\pmod 4$
Mà 1 scp chia $4$ chỉ dư $0$ hoặc $1$ nên vô lý.

Vậy pt vô nghiệm.

c.

$(x-1)^2=2017^{2017}+1\equiv 1^{2017}+1\equiv 2\pmod 4$
Mà 1 scp khi chia cho $4$ chỉ dư $0$ hoặc $1$ nên vô lý

Vậy pt vô nghiệm

d.

$(x+2)^2=2018^{10}+4\equiv (-1)^{10}+1\equiv 2\pmod 3$

Mà 1 scp khi chia $3$ dư $0$ hoặc $1$ nên vô lý

Vậy pt vô nghiệm.

nguyen hai yen
Xem chi tiết
hayato
Xem chi tiết
An ngọc lâm
17 tháng 9 2018 lúc 18:25

A=1+2+3+...+2018=(1+2018)+(2+2017)+...(1009+1010)=2019x1009=2037171

B=(1+2019)+(3+2017)+...+(1009+1011)=2020x505=1020100

C=(2020+2)+(2018+4)+...+(1010+1012)=2022x505=1021110

Phạm Vũ Anh Tuấn
Xem chi tiết
Nguyễn Văn Nam
Xem chi tiết
Hân Hânn
Xem chi tiết
Chu Công Đức
5 tháng 1 2020 lúc 15:14

\(x=2019\)\(\Rightarrow x+1=2020\)

\(\Rightarrow B=x^{2019}-\left(x+1\right).x^{2018}+........-\left(x+1\right).x^2+\left(x+1\right).x+1\)

        \(=x^{2019}-x^{2019}+x^{2018}+.......-x^3-x^2+x^2+x+1\)

        \(=x+1=2020\)

Vậy tại \(x=2019\)thì \(B=2020\)

Khách vãng lai đã xóa
Trang Nguyễn
5 tháng 1 2020 lúc 15:17

Ta có x=2019

   => x + 1=2020

thay x+1 vào B, ta có:

\(A=x^{2019}-\left(x+1\right)x^{2018}+\left(x+1\right)x^{2017}-...+\left(x+1\right)x-1\)

=> \(A=x^{2019}-x^{2019}-x^{2018}+x^{2018}+x^{2017}-...+x^2+x-1\)

=> \(A=x-1=2020-1=2019\)

Khách vãng lai đã xóa
Nguyen Thi Ngoc Linh
Xem chi tiết
Nam Phạm An
Xem chi tiết
Nam Phạm An
Xem chi tiết
Kiệt Nguyễn
8 tháng 11 2019 lúc 21:02

\(x^{2019}-2020x^{2018}+2020x^{2017}-2020x^{2016}+...+2020x-2020\)

\(=x^{2019}-2019x^{2018}-x^{2018}+2019x^{2017}+x^{2017}\)

\(-2019x^{2016}-x^{2016}+...+2019x+x-2020\)

\(=x^{2018}\left(x-2019\right)-x^{2017}\left(x-2019\right)+x^{2016}\left(x-2019\right)\)

\(+...-x\left(x-2019\right)+\left(x-2019\right)-1\)

\(=-1\)

Khách vãng lai đã xóa