A = 9/1*2+9/2*3+9/3*4+...+9/98*99+9/99*100
Cho A=9/1×2+9/2×3+9/3×4+...+9/98×99+9/99×100
Giải:
\(A=\dfrac{9}{1.2}+\dfrac{9}{2.3}+\dfrac{9}{3.4}+...+\dfrac{9}{98.99}+\dfrac{9}{99.100}\)
\(\Leftrightarrow A=9\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\right)\)
\(\Leftrightarrow A=9\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(\Leftrightarrow A=9\left(\dfrac{1}{1}-\dfrac{1}{100}\right)\)
\(\Leftrightarrow A=9.\dfrac{99}{100}\)
\(\Leftrightarrow A=\dfrac{891}{100}\)
Vậy ...
A=9/1×2+9/2×3+....+9/98×99+9/99×100. Tính A
\(A=9\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)
\(A=9\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=9\left(1-\frac{1}{100}\right)\)
\(A=9\times\frac{99}{100}\)
\(A=\frac{891}{100}\) hoặc 8,91
\(A=9.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
A=\(9.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=9.\left(1-\frac{1}{100}\right)=\frac{891}{100}\)
Tính giá trị biểu thức:
B= 9/ 1. 2- 9/ 2. 3- 9/ 3. 4..... - 9/ 98. 99- 9/ 99. 100
\(\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{99.100}\)
=\(9.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
=\(9.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
=\(9.\left(\frac{1}{1}-\frac{1}{100}\right)\)
=\(9.\frac{99}{100}\)
=\(\frac{891}{100}\)
Tính nhanh:
A = 1/3 - 3/4 - ( - 3/5 ) + 1/72 - 2/9 - 1/36 + 1/15
B = 1/ 5 - 3/7 + 5/9 - 2/11 + 7/13 - 9/16 - 7/13 + 2/11 - 5/9 + 3/7 - 1/5
C = 1/100 - 1/100 . 99 - 1/99 . 98 - 1/98 . 97 - ... - 1/3 . 2 - 1/ 2 . 1
C=\(\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
=\(\frac{1}{100}-\left(\frac{1}{2.1}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
=\(\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
=\(\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
=\(\frac{1}{100}-\frac{99}{100}\)
=\(\frac{-98}{100}=\frac{-49}{50}\)
C=1/100 -1/100.99 -1/99.98 -1/98.97-......- 1/3.2 -1/2.1
= 1/100 - (1/100.99 + 1/99.98 + 1/98.97-......+ 1/3.2 +1/2.1)
Đặt A = 1/100.99 + 1/99.98 + 1/98.97-......+ 1/3.2 +1/2.1 => C = 1/100 - A
Dễ thấy 1/2.1 = 1/1 - 1/2
1/3.2 = 1/2 - 1/3
.....................
1/99.98 = 1/98 - 1/99
1/100.99 = 1/99 - 1/100
=> cộng từng vế với vế ta
\(B=\left(\frac{3}{7}+\frac{-3}{7}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{5}{9}+\frac{-5}{9}\right)+\left(\frac{2}{11}-\frac{2}{11}\right)\)
\(+\left(\frac{7}{13}-\frac{7}{13}\right)-\frac{9}{16}\)
\(=0+0+0+0-\frac{1}{16}\)
\(=\frac{-1}{16}\)
A=9/1*2+9/2*3+9/3*4+...9/96*99+9/99*100
\(A=\dfrac{9}{1.2}+\dfrac{9}{2.3}+\dfrac{9}{3.4}+...+\dfrac{9}{98.99}+\dfrac{9}{99.100}\)
\(A=9-\dfrac{9}{2}+\dfrac{9}{2}-\dfrac{9}{3}+\dfrac{9}{3}-\dfrac{9}{4}+...+\dfrac{9}{99}-\dfrac{9}{100}\)
\(A=9-\dfrac{9}{100}\)
\(A=\dfrac{891}{100}\)
\(A=\dfrac{9}{1.2}+\dfrac{9}{2.3}+\dfrac{9}{3.4}+.......................+\dfrac{9}{98.99}+\dfrac{9}{99.100}\)
\(\Rightarrow A=9\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.................+\dfrac{1}{98.99}+\dfrac{1}{99.100}\right)\)
\(\Rightarrow A=9\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+..........+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(\Rightarrow A=9\left(1-\dfrac{1}{100}\right)\)
\(\Rightarrow A=9.\dfrac{99}{100}\)
\(\Rightarrow A=\dfrac{891}{100}\)
Đề sai
\(A=\dfrac{9}{1\cdot2}+\dfrac{9}{2\cdot3}+\dfrac{9}{3\cdot4}+...+\dfrac{9}{98\cdot99}+\dfrac{9}{99\cdot100}\\ =9\cdot\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{98\cdot99}+\dfrac{1}{99\cdot100}\right)\\ =9\cdot\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\\ =9\cdot\left(1-\dfrac{1}{100}\right)\\ =9\cdot\dfrac{99}{100}\\ =\dfrac{891}{100}\)
Tính
1+4+5+9+14+...+60+97
5+9+13+...+2005+2009+2013
3+6+9+...+108
1×2+2×3+3×4+4×5+...+98×99+99×100
1, tính nhanh
a, 100 - 99 + 98 - 97 + 96 - 95 + ... + 4 - 3 + 2
b, 100 - 5 - 5 - ... - 5 ( có 20 chữ số 5 )
c, 99 - 9 - 9 - ... - 9 ( có 11 chữ số 9 )
d, 2011 + 2011 + 2011 + 2011 - 2008 x 4
a) 100 - 99 + 98 -97 + 96 -95 +...+ 4-3 + 2
= (100 - 99) + (98 -97) + (96 - 95) +...+ (4-3) +2 (gồm 49 cặp và 1 số hạng)
= 1+1+1+....+1 +2
= 49 x 1 + 2 = 51
b) 100 - 5-...-5 - 5 (20 số 5)
= 100 - 20 x 5 = 0
c) 99 - 9 - 9 -... - 9 -9 (11 số 9)
=99 - 11 x 9 = 0
d) 2011 + 2011+2011+2011 - 2008 x 4
= 2011 x 4 - 2008 x 4
= 4 x (2011 - 2008)
= 4 x 3
=12
A=1-2-3-4=5-6-7-8+9-10-11-12+...+97-98-99-100
B=1+2-3-4+5+6-7-8+....+97+98-99-100
A = 1 - 2 - 3 - 4 + 5 - 6 - 7 - 8 + ........... + 97 - 98 - 99 - 100 (100 số )
A = (1 - 2 - 3 - 4) + (5 - 6 - 7 - 8) + ................ + (97 - 98 - 99 - 100)
(25 cặp , tính bằng cách lấy số cả dãy chia cho số số của mỗi cặp )
A = (-8) . 25
A = -200
A = 1-2 + 3-4 + ......+ 99-100
= ( -1) + ( -1) +....+(-1)
= (-1) x 50
= -50
vì có tấ cả 50 số -1
A=1+2-3+4-5+6-7+8-9+...+98-99+100
còn cách tiểu học anh nhớ không lầm là như thế này:
A=100-99+98-......-9+8-7+6-5+4-3+2+1
A=1+1+........+1+3
từ 100 đến 3 có 98 số hạng nên có 49 cặp nê
A=49+3= 52
từ 2 đến 99 có 98 hạng tử nên có49 cặp mà mỗi cặp = -1 nênA =1-49+100=52( đây là cách THCS)