Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng Tuấn Anh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 7 2019 lúc 2:16

Hai số 2 và 5 là nghiệm của phương trình :

(x – 2)(x – 5) = 0 ⇔  x 2  – 7x + 10 = 0

Lê Quốc Huy
Xem chi tiết
Phạm Ngọc Thạch
11 tháng 6 2017 lúc 15:56

\(\Delta=8>0\) nên phương trình luôn có 2 nghiệm.

Theo viet: x1 + x2 = 2;   x1*x2 = -1 

Phương trình cần tìm có 2 nghiệm là -xvà -x2

S= - x1 - x2 = -(x1 + x2) = -2

P= (-x1)*(-x2) = x1*x2 = -1

Vậy phương trình cần tìm là: X2 - SX + P = X2 + 2X - 1

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 7 2018 lúc 18:08

Hai số 0,1 và 0,2 là nghiệm của phương trình :

(x – 0,1)(x – 0,2) = 0 ⇔  x 2  – 0,3x + 0,02 = 0

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 5 2018 lúc 2:43

 Hai số 1 -  2  và 1 +  2  là nghiệm của phương trình :

[x – (1 -  2  )][x – (1 +  2  )] = 0

⇔ x 2  – (1 +  2  )x – (1 -  2  )x + (1 -  2  )(1 +  2  ) = 0

⇔  x 2  – 2x – 1 = 0

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 4 2019 lúc 7:10

Hai số -1/2 và 3 là nghiệm của phương trình :

(x + 1/2 )(x – 3) = 0 ⇔ 2 x 2  – 5x – 3 = 0

Lê Quốc Huy
Xem chi tiết
Lê Quốc Huy
10 tháng 6 2017 lúc 21:59

ai gải giúp mìn với ạ

Phạm Phú Sơn
26 tháng 3 2018 lúc 21:25

ko biết làm thông cảm :>

Nguyen An
11 tháng 4 2018 lúc 5:18

Gọi phương trình cần tìm là (1) ax2 + bx - c = 0

ta có: delta = 22 - 4.(-1) = 8 > 0 => phương trình có 2 nghiệm phân biệt x1= \(\frac{2-\sqrt{8}}{2}\)= 1 - \(\sqrt{2}\), x2 = 1 + \(\sqrt{2}\)

Suy ra nghiệm phương trình (1) là x1 = - 1 + \(\sqrt{2}\), x2 = -1 - \(\sqrt{2}\)

ta có x1 = -1 + \(\sqrt{2}\)\(\frac{-2+\sqrt{8}}{2}\), x2 = \(\frac{-2-\sqrt{8}}{2}\)

=> a = 1, b = 2, delta = 8

ta có: delta = b2 - 4ac = 22 - 4c = 8 => c = - 1

vậy phương trình cần tìm có dạng: x2 + 2x - 1 = 0

xong r nhé:))

Nguyễn Mạnh Ngọc
Xem chi tiết
Lê Thị Thục Hiền
30 tháng 5 2021 lúc 12:38

\(x^2-2x-1=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-1\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}u=x_1+\left(x_2\right)^2\\v=x_2+\left(x_1\right)^2\end{matrix}\right.\)

\(\Rightarrow\)\(\left\{{}\begin{matrix}u+v=\left(x_1+x_2\right)+\left(x_2+x_1\right)^2-2x_1x_2\\uv=2x_1x_2+x_1^3+x_2^3=2x_1x_2+\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}u+v=8\\uv=12\end{matrix}\right.\)

=>u và v là nghiệm của pt \(t^2-8t+12=0\)

Hải Đăng
Xem chi tiết
Hồng Phúc
3 tháng 2 2021 lúc 12:50

Theo định lí Viet \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=-1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=x_1^4+x_2^4=\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2-2x_1^2x_2^2=727\\y_1y_2=x_1^4x_2^4=1\end{matrix}\right.\)

Phương trình cần tìm có dạng \(ax^2+bx+c=0\left(1\right)\)

\(\Rightarrow\left\{{}\begin{matrix}-\dfrac{b}{a}=727\\\dfrac{c}{a}=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}b=-727a\\c=a\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow ax^2-727ax+a=0\)

\(\Leftrightarrow x^2-727x+1=0\)