Tima,b,c thuộc Z, biết:\(\frac{a}{b}=\frac{b}{c^2}=\frac{c}{a^3}\)và \(a+b-c+a-b+c=a.b.c\)
Bài 1:Cho a,b,c là các số nguyên đôi 1 khác nhau thỏa mãn a+b+c=2019.tính giá trị biểu thức
\(M=\frac{a^3}{\left(a+b\right)\left(a-c\right)}+\frac{b^3}{\left(b-a\right)\left(b-c\right)}+\frac{c^3}{\left(c-a\right)\left(c-b\right)}\)
Bài 2:Cho \(a+b+c=0;P=\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b};Q=\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\)
\(CMR\) \(P\cdot Q=9\)
Bài 3:Cho 3 số x;y;z đôi 1 khác nhau thỏa mãn x+y+z=0 và \(A=\frac{4xy-z^2}{xy+2z^2};B=\frac{4yz-x^2}{yz+2x^2};C=\frac{4xz-y^2}{xz+2y^2}\)
CMR A.B.C=1
Đặt \(\left(\frac{a-b}{c},\frac{b-c}{a},\frac{c-a}{b}\right)\rightarrow\left(x,y,z\right)\)
Khi đó:\(\left(\frac{c}{a-b},\frac{a}{b-c},\frac{b}{c-a}\right)\rightarrow\left(\frac{1}{x},\frac{1}{y},\frac{1}{z}\right)\)
Ta có:
\(P\cdot Q=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3+\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}\)
Mặt khác:\(\frac{y+z}{x}=\left(\frac{b-c}{a}+\frac{c-a}{b}\right)\cdot\frac{c}{a-b}=\frac{b^2-bc+ac-a^2}{ab}\cdot\frac{c}{a-b}\)
\(=\frac{c\left(a-b\right)\left(c-a-b\right)}{ab\left(a-b\right)}=\frac{c\left(c-a-b\right)}{ab}=\frac{2c^2}{ab}\left(1\right)\)
Tương tự:\(\frac{x+z}{y}=\frac{2a^2}{bc}\left(2\right)\)
\(=\frac{x+y}{z}=\frac{2b^2}{ac}\left(3\right)\)
Từ ( 1 );( 2 );( 3 ) ta có:
\(P\cdot Q=3+\frac{2c^2}{ab}+\frac{2a^2}{bc}+\frac{2b^2}{ac}=3+\frac{2}{abc}\left(a^3+b^3+c^3\right)\)
Ta có:\(a+b+c=0\)
\(\Rightarrow\left(a+b\right)^3=-c^3\)
\(\Rightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)
\(\Rightarrow a^3+b^3+c^3=3abc\)
Khi đó:\(P\cdot Q=3+\frac{2}{abc}\cdot3abc=9\)
Tìm a,b,c biết \(\frac{a}{3}=\frac{b}{12}=\frac{c}{5}\)và a.b.c=22,5
Đặt\(\frac{a}{3}=\frac{b}{12}=\frac{c}{5}\)= k => a= 3k; b= 12k;c=5k
a.b.c = 22,5 => 3k.12k.5k = 22,5 = 180k3 = 22,5 => k3 = 0,125 => k = 0,5
Do đó:\(\frac{a}{3}=0,5=>a=1,5\)
\(\frac{b}{12}=0,5=>b=6\)
\(\frac{c}{5}=0,5=>c=2,5\)
Vậy...
Đặt \(\frac{a}{3}=\frac{b}{12}=\frac{c}{5}\)= k => a = 3k ; b = 12k ; c = 5k
a.b.c = 22,5 => 3k.12k.5k = 22,5 => 180k3 = 22,5 => k3 = 0,125 => k= 0,5
Do đó : \(\frac{a}{3}=0,5\Rightarrow a=1,5\)
\(\frac{b}{12}=0,5\Rightarrow b=6\)
\(\frac{c}{5}=0,5\Rightarrow c=2,5\)
Vậy ...
Ta có: a/3=b/12=c/5. Đặt a=3k ; b=12k ; c=5k
=>3.12.5.k^3=22,5 => k^3=0,125=>k=0,5
=>a=3.0,5=1,5
b=12.0,5=6
c=5.0,5=2,5
a,Tìm a,b,c thuộc Z sao cho \(\frac{x}{6}-\frac{2}{y}=\frac{1}{30}\)
b,Tìm a,b thuộc N biết \(\frac{a}{2}+\frac{b}{3}=\frac{a+b}{2+3}\)
c,Tìm a,b,c thuộc N biết \(\frac{52}{9}=5+\frac{1}{a+\frac{1}{b+\frac{1}{c}}}\)
Cho a.b.c=0 và a+b+c=0. Chứng minh: $\frac{1}{b^2+c^2-a^2} + \frac{1}{c^2+a^2-b^2} + \frac{1}{a^2+b^2-c^2} = 0
Cho abc=0 thì không chứng minh được, a+b+c=0 là đủ rồi
Ta có: a+b+c=0 => a+b=-c
=>(a+b)2=(-c)2
=>a2+2ab+b2=c2
=>a2+b2-c2=-2ab
Tương tự ta có: b2+c2-a2=-2bc ; c2+a2-b2=-2ca
=>\(\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}+\frac{1}{a^2+b^2-c^2}=-\frac{1}{2bc}-\frac{1}{2ca}-\frac{1}{2ab}=\frac{a+b+c}{-2abc}=0\) (đpcm)
Cho \(abc=0\)thì không chứng minh được, \(a+b+c=0\)là đủ rồi.
Ta có: \(a+b+c=0\Rightarrow a+b=-c\)
\(\Rightarrow\left(a+b\right)^2=\left(-c\right)^2\)
\(\Rightarrow a^2+2ab+b^2=c^2\)
\(\Rightarrow a^2+b^2-c^2=-2ab\)
Tương tự ta có: \(b^2+c^2-a^2=-2ab;c^2+a^2-b^2=-2ca\)
\(\Rightarrow\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}+\frac{1}{a^2+b^2-c^2}=-\frac{1}{2bc}-\frac{1}{2ca}-\frac{1}{2ab}=\frac{a+b+c}{-2abc}=0\)
tìm 3 số a,b,c biết\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\) và a.b.c=480
Đặt: \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=k\)
Suy ra: a=3k, b=4k, c=5k
a.b.c=480 suy ra 3k.4k.5k=480
suy ra: 60.k^3=480
k^3=480:60=8
Vậy k=2
Thay vào ta có:a=6, b=8,c=10
Đặt: \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=k\)
\(\Rightarrow\) a = 3k, b = 4k, c = 5k
a.b.c=480 \(\Rightarrow\) 3k.4k.5k=480
\(\Rightarrow\) 60.k^3=480
k^3 = 480:60 = 8
Vậy k= 2
Thay vào ta có:a = 6 , b = 8, c = 10
1.Cho a+b+c+d ≠0 và \(\frac{a}{b+c+d}\)=\(\frac{b}{a+c+d}\)=\(\frac{c}{a+b+d}\)=\(\frac{d}{a+b+c}\)
Tính giá trị của A=\(\frac{a+b}{c+d} \)+\(\frac{b+c}{a+d}\)+\(\frac{c+d}{a+b}\)+\(\frac{d+a}{b+c}\)
2.Tìm x,y,z biết :
a)\(\dfrac{x^3}{8}\)=\(\dfrac{y^3}{64}\)=\(\dfrac{z^3}{216}\)và \(x^2\)+\(y^2\)+\(z^2\)=14
b)\(\dfrac{2x+1}{5}=\dfrac{3y-2}{7}=\dfrac{2x+3y-1}{6x}\)
1, \(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{a+b+c}=\dfrac{a+b+c+d}{3\left(a+b+c+d\right)}=\dfrac{1}{3}\)
Do đó \(\left\{{}\begin{matrix}3a=b+c+d\left(1\right)\\3b=a+c+d\left(2\right)\\3c=a+b+d\left(3\right)\\3d=a+b+c\left(4\right)\end{matrix}\right.\)
Từ (1) và (2) \(\Rightarrow3\left(a+b\right)=a+b+2c+2d\Leftrightarrow2\left(a+b\right)=2\left(c+d\right)\Leftrightarrow a+b=c+d\Leftrightarrow\dfrac{a+b}{c+d}=1\)
Tương tự cũng có: \(\dfrac{b+c}{a+d}=1;\dfrac{c+d}{a+b}=1;\dfrac{d+a}{b+c}=1\)
\(\Rightarrow A=4\)
2, Có \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)\(\Leftrightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{14}{56}=\dfrac{1}{4}\)
Do đó \(\dfrac{x^2}{4}=\dfrac{1}{4};\dfrac{y^2}{16}=\dfrac{1}{4};\dfrac{z^2}{36}=\dfrac{1}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=1\\y^2=4\\z^2=9\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\pm1\\y=\pm2\\z=\pm3\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(1;2;3\right),\left(-1;-2;-3\right)\)
Bài 2 :
a, Ta có : \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)
\(\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{1}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=1\\y^2=4\\z^2=9\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\pm1\\y=\pm2\\z=\pm3\end{matrix}\right.\)
Vậy ...
b, Ta có : \(\dfrac{2x+1}{5}=\dfrac{3y-2}{7}=\dfrac{2x+3y-1}{5+7}=\dfrac{2x+3y-1}{6x}\)
\(\Rightarrow6x=12\)
\(\Rightarrow x=2\)
\(\Rightarrow y=3\)
Vậy ...
cho a,b,c thuộc R và a.b.c=1.chứng minh \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}=1\)
Cho a,b,c thuộc R và a.b.c=1.chứng minh \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}=1\)
Giải:Ta có:\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)
\(=\frac{a.c}{abc+ac+c}+\frac{b}{bc+b+abc}+\frac{c}{ca+c+1}\)
\(=\frac{ac}{ac+c+1}+\frac{1}{c+1+ac}+\frac{c}{ca+c+1}\)
\(=\frac{ac+1+c}{ac+c+1}=1\)
Suy ra điều phải chứng minh
cho a.b.c khác 0 và
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
tính giá trị biểu thức P=\(\frac{a+b}{a}.\frac{b+c}{b}.\frac{c+a}{c}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(...=\frac{a+b-c+b+c-a+c+a-b}{c+a+b}=\frac{a+b+c}{a+b+c}=1\)( a, b, c khác 0 )
=> \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=1\)
=> \(\hept{\begin{cases}a+b-c=c\\b+c-a=a\\c+a-b=b\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}}\)
Thế vào P ta được :
\(P=\frac{2c}{a}\cdot\frac{2a}{b}\cdot\frac{2b}{c}=\frac{8abc}{abc}=8\)
1,tìm các số x,y,z biết rằng
\(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)và 2x+3y-z=186
2,cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)chứng mih rằng \(\frac{a+b+c}{b+c+d}\)tất cả mủ 3 =\(\frac{a}{d}\)
3,cho\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)chứng minh rằng a=b=c
4,cho\(\frac{a}{2}=\frac{b}{5}\)và a.b=90.tìm a và b
5,tìm x,y,z biết \(\frac{y+z+1}{x}=\frac{y+z+2}{y}=\frac{x+y-3}{2}=\frac{1}{x+y+z}\)