Tìm a,b,c biết \(\frac{a}{3}=\frac{b}{12}=\frac{c}{5}\)và a.b.c=22,5
tìm 3 số a,b,c biết\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\) và a.b.c=480
1.Cho a+b+c+d ≠0 và \(\frac{a}{b+c+d}\)=\(\frac{b}{a+c+d}\)=\(\frac{c}{a+b+d}\)=\(\frac{d}{a+b+c}\)
Tính giá trị của A=\(\frac{a+b}{c+d} \)+\(\frac{b+c}{a+d}\)+\(\frac{c+d}{a+b}\)+\(\frac{d+a}{b+c}\)
2.Tìm x,y,z biết :
a)\(\dfrac{x^3}{8}\)=\(\dfrac{y^3}{64}\)=\(\dfrac{z^3}{216}\)và \(x^2\)+\(y^2\)+\(z^2\)=14
b)\(\dfrac{2x+1}{5}=\dfrac{3y-2}{7}=\dfrac{2x+3y-1}{6x}\)
cho a,b,c thuộc R và a.b.c=1.chứng minh \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}=1\)
cho a.b.c khác 0 và
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
tính giá trị biểu thức P=\(\frac{a+b}{a}.\frac{b+c}{b}.\frac{c+a}{c}\)
1,tìm các số x,y,z biết rằng
\(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)và 2x+3y-z=186
2,cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)chứng mih rằng \(\frac{a+b+c}{b+c+d}\)tất cả mủ 3 =\(\frac{a}{d}\)
3,cho\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)chứng minh rằng a=b=c
4,cho\(\frac{a}{2}=\frac{b}{5}\)và a.b=90.tìm a và b
5,tìm x,y,z biết \(\frac{y+z+1}{x}=\frac{y+z+2}{y}=\frac{x+y-3}{2}=\frac{1}{x+y+z}\)
cho a,b,c khác 0 và \(\frac{b+c-a}{c}=\frac{a+b+c}{b}=\frac{b-c+a}{a}\).Tính giá trị của biểu thức A=\(\frac{\left(b-a\right).\left(c+b\right).\left(a+c\right)}{a.b.c}\)
Cho; \(a.b.c=1\)và \(\frac{a}{b^3}+\frac{b}{c^3}+\frac{c}{a^3}=\frac{b^3}{a}+\frac{c^3}{b}+\frac{a^3}{c}\)
CMR:
Trong 3 số a;b;c luôn có 1 số là lập phương của một trong hai số còn lại
Biết : \(\frac{a}{a'}+\frac{b'}{b}=1;\frac{b}{b'}+\frac{c'}{c}=1\)
Chứng minh rằng: a.b.c + a'.b'.c' = 0