Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phùng Gia Bảo
Xem chi tiết
Nguyễn Linh Chi
7 tháng 3 2020 lúc 16:19

Với \(0\le x;y\le1\) ta có:

\(\frac{x}{\sqrt{y+3}}+\frac{y}{\sqrt{x+3}}\ge\frac{x}{\sqrt{1+3}}+\frac{y}{\sqrt{1+3}}=\frac{x+y}{2}\)

Dấu "=" xảy ra <=> x = y = 1

Có: \(0\le x;y\le1\)

=> \(0\le x^2\le x\le1;0\le y^2\le y\le1\)

\(\left(\frac{x}{\sqrt{y+3}}+\frac{y}{\sqrt{x+3}}\right)^2\le2\left(\frac{x^2}{y+3}+\frac{y^2}{x+3}\right)\le2\left(\frac{x}{x+y+2}+\frac{y}{x+y+2}\right)\)

\(=2\left(\frac{x+y+2}{x+y+2}-\frac{2}{x+y+2}\right)\le2\left(1-\frac{2}{1+1+2}\right)=1\)

=> \(\sqrt{\frac{x}{\sqrt{y+3}}+\frac{y}{\sqrt{x+3}}}\le1\)

Dấu "=" xảy ra x<=>  = y =1

Khách vãng lai đã xóa
huynh van duong
Xem chi tiết
Nguyễn Thị Thùy Linh
24 tháng 5 2020 lúc 9:56

đây đâu phải toán lớp 1

Khách vãng lai đã xóa
LÊ NGỌC BẢO
24 tháng 5 2020 lúc 22:34

cũng ko phải bài toán lớp 2

Khách vãng lai đã xóa
CẦM XUÂN THÀNH
25 tháng 5 2020 lúc 20:28

cái này toán lớp 5 r

Khách vãng lai đã xóa
Trần Thành Phát Nguyễn
Xem chi tiết
do linh
Xem chi tiết
Củ Lạc Giòn Tan
Xem chi tiết
Phú Gia
Xem chi tiết
Hoàng Lê Bảo Ngọc
16 tháng 7 2016 lúc 15:27

Đặt \(a=\sqrt{1-x},a\ge0\)  ; \(b=\sqrt{1+x},b\ge0\)

\(\Rightarrow y=\frac{5-3x}{\sqrt{1-x^2}}=\frac{\left(1+x\right)+4\left(1-x\right)}{\sqrt{1+x}.\sqrt{1-x}}=\frac{b^2+4a^2}{ab}\)

Áp dụng bất đẳng thức Cauchy , ta có : \(\frac{b^2+4a^2}{ab}\ge\frac{2.\sqrt{b^2.4a^2}}{ab}=\frac{4ab}{ab}=4\)

Dấu đẳng thức xảy ra \(\Leftrightarrow b^2=4a^2\Leftrightarrow b=2a\Leftrightarrow\sqrt{1+x}=2\sqrt{1-x}\Leftrightarrow x=\frac{3}{5}\)

Vậy Min y = 4 \(\Leftrightarrow x=\frac{3}{5}\)

Winkies
Xem chi tiết
KWS
28 tháng 1 2019 lúc 17:28

CMR : \(\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\le2;\left(0\le x\le y\le z\le1\right)\)

Ta có : \(\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\le\frac{x}{xy+1}+\frac{y}{xy+1}+\frac{z}{xy+1}=\frac{x+y+z}{xy+1}\left(1\right)\)

Ta lại có : \(0\le x\le1;0\le y\le1\)

\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\ge0\)

\(\Leftrightarrow xy-x-y+1\ge0\)

\(\Leftrightarrow xy+1\ge x+y\left(2\right)\)

Thay (2) và (1) được : \(\frac{x+y+z}{xy+1}\le\frac{xy+1+2}{xy+1}\le\frac{2\left(xy+1\right)}{xy+1}=2\)

Tran Le Khanh Linh
16 tháng 5 2020 lúc 20:54

Vì \(0\le x\le y\le z\le1\Rightarrow x-1\le0;y-1\le0\)

\(\Rightarrow\left(x-1\right)\left(y-1\right)\ge0\Rightarrow xy+1\ge x+y\Rightarrow\frac{1}{xy+1}\le\frac{1}{x+y}\Rightarrow\frac{z}{xy+1}\le\frac{z}{x+y}\left(1\right)\)

Cmtt: \(\hept{\begin{cases}\frac{x}{yz+1}\le\frac{x}{y+z}\left(2\right)\\\frac{y}{xz+1}\le\frac{y}{x+z}\left(3\right)\end{cases}}\)

Từ (1), (2), (3) ta có:

\(\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\le\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\left(4\right)\)

Mà \(\frac{x}{y+z}\le\frac{x+z}{x+y+z}\Rightarrow\frac{x}{y+z}\le\frac{2x}{x+y+z}\)

Cmtt: \(\hept{\begin{cases}\frac{y}{x+z}\le\frac{2y}{x+y+z}\\\frac{z}{x+y}\le\frac{2z}{x+y+z}\end{cases}}\)

\(\Rightarrow\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\le\frac{2\left(x+y+z\right)}{x+y+z}\le2\left(5\right)\)

Từ (4), (5) => đpcm

Khách vãng lai đã xóa
Nguyễn Ngọc Trâm
Xem chi tiết
Minh Nguyệt
10 tháng 4 2020 lúc 16:02

Giải từng bất phương trình bằng cách chuyển vế rồi lập bảng xét dấu là ra nha bạn

Hoàng Hiếu Võ
Xem chi tiết