cho tam giác abc cân tại a, hai đường cao bh và ck cắt nhau tại i(h thuộc ac; k thuộc ab) chứng minh tam giác BIC cân
cho tam giác ABC cân tại A (góc A nhỏ hơn 90 độ). Vẽ hai đường cao BH và CK cắt nhau tại I (H thuộc AC, K thuộc AB). Chứng minh rằng
a/ tam giác BCK = tam giácCBH
b/ tam giác BIC cân
a) Xét 2 tam giác vuông BCK & CBH có:
B = C
BC chung
=>tam giác BCK = CBH ( cạnh huyền - góc nhọn)
b) Ta có : IBC = ICB ( 2 góc tương ứng)
=> tam giác IBC là tam giác cân
Cho tam giác ABC nhọn,các đường cao BH và CK(H thuộc AC,K thuộc AB).Vẽ các đường tròn đường kính AC,AB lần lượt cắt BH,CK tại D và E.CMR:tam giác ADE cân.
Kẻ đường cao AJ, trực tâm của tam giác là I. Khi đó AKIH là tứ giác nội tiếp nên \(\widehat{AKH}=\widehat{AIH}\) (Cùng chắn cung AH)
Lại có \(\widehat{AIH}=\widehat{ACB}\) (Cùng phụ với \(\widehat{HAI}\) ). Vậy thì \(\widehat{AKH}=\widehat{ACB}\)
Vậy thì \(\Delta AKH\sim\Delta ACB\left(g-g\right)\Rightarrow\frac{AK}{AC}=\frac{AH}{AB}\Rightarrow AK.AB=AH.AC\left(1\right)\)
Xét tam giác vuông ABE, áp dụng hệ thức lượng ta có AE2 = AK.AB. Tương tự AD2 = AH.AC (2)
Từ (1) và (2) suy ra AE = AD (đpcm)
Cho tam giác ABC cân tại A ( Â<90°). Kẻ BH vuông góc AC ( H thuộc AC) , CK thuộc AB ( K thuộc AB).BH và CK cắt nhau tại E. a) Chứng minh tam giác BHC = tam giác CKB. b) Chứng minh tam giác ABC cân tại E
bn cho mình gửi sắp đến thi học kì 2 rồi. đây là những món quà mà bn sẽ nhận đc:
1: áo quần
2: tiền
3: đc nhiều người yêu quý
4: may mắn cả
5: luôn vui vẻ trong cuộc sống
6: đc crush thích thầm
7: học giỏi
8: trở nên xinh đẹp
phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người, sau 3 ngày bn sẽ có những đc điều đó. nếu bn ko gửi tin nhắn này cho 25 người thì bn sẽ luôn gặp xui xẻo, học kì 2 bn sẽ là học sinh yếu và bạn bè xa lánh( lời nguyền sẽ bắt đầu từ khi đọc) ( mình
cũng bị ép);-;
cho tam giác ABC cân tại A. Kẻ BH vuông góc với AC (H thuộc AC), CK vuông góc với AB ( K thuộc AB). BH và CK cắt nhau tại O, tia AO cắt tia BC tại I. CM: AI vuông góc với BC.
Cho tam giác ABC cân tại A và 2 đường cao BH và CK gặp nhau tại S (H thuộc AC, K thuộc AB). Chứng minh SH . SB = SK . SC
Xét ΔSKB vuông tại K và ΔSHC vuông tại H có
\(\widehat{KSB}=\widehat{HSC}\)
Do đó: ΔSKB\(\sim\)ΔSHC
Suy ra: \(\dfrac{SK}{SH}=\dfrac{SB}{SC}\)
hay \(SH\cdot SB=SK\cdot SC\)
Cho tam giác ABC nhọn,các đường cao BH và CK(H thuộc AC,K thuộc AB).Vẽ các đường tròn đường kính AC,AB lần lượt cắt BH,CK tại D và E.CMR:tam giác ADE cân.
các bạn giúp mình nha :))
Ta dễ dàng chứng minh được tam giác AKH đồng dạng tam giác ACB (g.g)
=> \(\frac{AH}{AB}=\frac{AK}{AC}\Rightarrow AH.AC=AK.AB\) (*)
Vì tam giác ADC và tam giác AEB lần lượt nội tiếp các đường tròn đường kính AC và AB nên là các tam
giác vuông, đồng thời các đường cao tương ứng là DH và EK
Áp dụng hệ thức về cạnh trong tam giác vuông được \(AD^2=AH.AC\) , \(AE^2=AK.AB\)
Từ (*) ta suy ra \(AD^2=AE^2\Rightarrow AD=AE\)
Vậy tam giác ADE là tam giác cân tại A. (đpcm)
cho tam giác ABC cân tại A. kẻ BH vuông góc AC, CK vuông góc AB(H thuộc AC, K thuộc AB)
a)CM: tam giác AKH cân
b)Gọi I là giao của BH và CK, AI cắt BC tại M. Chứng minh IM là phân giác của BIC
a: Xet ΔAHB vuông tại H và ΔAKC vuông tại K có
góc BAH chung
AB=AC
=>ΔAHB=ΔAKC
=>AH=AK
=>ΔAHK cân tại A
b: góc ABH+góc HBC=góc ABC
gócACK+góc ICB=góc ACB
mà góc ABC=góc ACB; góc ABH=góc ACK
nên góc IBC=góc ICB
=>ΔIBC cân tại I
mà IM là đường cao
nên IM là phân giác của góc BIC
cho tam giác ABC cân tại A, vẽ BH vuông AC ( H thuộc AC ) , CK vuông AB ( K thuộc AB ) . gọi I là giao điểm BH và CK chứng minh rằng
a) tam giác BCH = tam giác CBK
b) CK = BH
c) tam giác BIC cân tại I
a) Xét tam giác BCH và tam giác CBK có
góc KBC = góc HCB ( vì tam giác ABC cân )
BC : cạnh chung
góc BKC = CHB = 90 độ (GT )
Từ 3 điều trên => Tam giác BCH = tam giác CBK (cạnh huyền - góc nhọn )
b) Vì tam giác BCH = tam giác CBK ( chứng minh ở câu a )
=> BH = CK ( cặp cạnh tương ứng )
c) Vì tam giác BCH = tam giác CBK ( câu a )
=> CH = BK ( 2 cạnh tương ứng )
Xét tam giác KIB và tam giác HIC có :
Góc KIB = góc HIC ( 2 góc đối đỉnh ) (1)
BK = CH ( chứng minh trên ) (2)
góc IKB = góc IHC = 90 độ (GT ) (3)
Từ (1) (2) và(3) => tam giác KIB = tam giác HIC ( g-c-g )
=> IB = IC ( cặp cạnh tương ứng )
=> tam giác BIC cân tại I
Cho tam giác ABC cân tại A .Kẻ BH vuông góc với AC; CK vuông góc với AB (H thuộc AC; K thuộc AB) a)Chứng minh tam giác AKH là tam giác cân b)Gọi I là giao của BH và CK;AI cắt BC tại M.Chứng minh rằng IM là phân giác của góc BIC c)Chứng minh :HK // BC
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB chung
=>ΔAHB=ΔAKC
=>AH=AK
b:
Xét ΔABC có
BH,CK là đường cao
BH cắt CK tại I
=>I là trực tâm
=>AI vuông góc BC tại M
Xét ΔKBC vuông tạiK và ΔHCB vuông tại H có
BC chung
KC=HB
=>ΔKBC=ΔHCB
=>góc IBC=góc ICB
=>ΔIBC cân tại I
mà IM là đường cao
nên IM là phân giác
c: Xet ΔBAC có AK/AB=AH/AC
nên KH//BC