Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoa ngu ( thông minh hơn...
Xem chi tiết
Nguyễn Phương Anh‏
8 tháng 5 2021 lúc 8:52

x4+2x2+1 

Ta có :

x4 ≥ 0 ∀ x

x2 ≥ 0 ∀ x => 2x≥ 0 ∀ x

=> x4+2x2+1  ≥ 1 >0

Suy ra đa thức trên vô nghiệm

nguyễn vũ nhật nguyên
Xem chi tiết
Nguyen Sinh Thanh
28 tháng 5 2020 lúc 10:42

Giải:

Tập xác định của phương trình

              x\(\varepsilon\)   (\(\infty\);\(\infty\)

Khách vãng lai đã xóa
Hường Lê
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 10 2019 lúc 10:52

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 12 2017 lúc 17:07

Chọn B.

Ta có:  x 4 - 3 x 2 + m   =   0

Dựa vào đồ thị ta có phương trình có 3 nghiệm phân biệt khi -m-3 = -3 => m = 0

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 12 2018 lúc 13:41

Chọn B.

Ta có:

  x 4 - 3 x 2 + m = 0 ⇔ x 4 - 3 x 2 = - m ⇔ x 4 - 3 x 2 - 3 = - m - 3 .

Dựa vào đồ thị ta có phương trình có 3 nghiệm phân biệt khi 

- m - 3 = - 3 ⇔ m = 0 .

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 5 2017 lúc 12:41

Đáp án C

x 4 − 3 x 2 + m = 0 ( 1 ) ⇔ x 4 − 3 x 2 − 3 = − 3 − m ( * )

Để phương trình (1) có 3 nghiệm phân biệt thì phương trình (*) có 3 nghiệm phân biệt

⇔ − 3 − m = − 3 ⇔ m = 0

Khuynfn chinh chẹpp
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 6 2023 lúc 23:30

a: A(x)=x^4-x^3-3x^2+2

B(x)=x^4+3x^2+5

b: A(x)+B(x)=2x^4-x^3+7

c: B(x)=x^2(x^2+3)+5>0 

=>B(x) ko có nghiệm

dũng nguyễn đăng
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 9 2021 lúc 14:16

a: Ta có: \(-x^2+4x-5\)

\(=-\left(x^2-4x+5\right)\)

\(=-\left(x^2-4x+4+1\right)\)

\(=-\left(x-2\right)^2-1< 0\forall x\)

Nguyễn Lê Phước Thịnh
4 tháng 9 2021 lúc 15:04

b: Ta có: \(x^4\ge0\forall x\)

\(3x^2\ge0\forall x\)

Do đó: \(x^4+3x^2\ge0\forall x\)

\(\Leftrightarrow x^4+3x^2+3>0\forall x\)

c: Ta có: \(\left(x^2+2x+3\right)=\left(x+1\right)^2+2>0\forall x\)

\(x^2+2x+4=\left(x+1\right)^2+3>0\forall x\)

Do đó: \(\left(x^2+2x+3\right)\left(x^2+2x+4\right)>0\forall x\)

\(\Leftrightarrow\left(x^2+2x+3\right)\left(x^2+2x+4\right)+3>0\forall x\)

dũng nguyễn đăng
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 9 2021 lúc 15:03

b: Ta có: \(x^4\ge0\forall x\)

\(3x^2\ge0\forall x\)

Do đó: \(x^4+3x^2\ge0\forall x\)

\(\Leftrightarrow x^4+3x^2+3>0\forall x\)

c: Ta có: \(\left(x^2+2x+3\right)=\left(x+1\right)^2+2>0\forall x\)

\(x^2+2x+4=\left(x+1\right)^2+3>0\forall x\)

Do đó: \(\left(x^2+2x+3\right)\left(x^2+2x+4\right)>0\forall x\)

\(\Leftrightarrow\left(x^2+2x+3\right)\left(x^2+2x+4\right)+3>0\forall x\)