Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Đặng Nhật Linh
Xem chi tiết
Xyz OLM
9 tháng 11 2019 lúc 17:26

1) Tính C

\(C=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+....+\frac{n-1}{n!}\)

\(=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{n-1}{n!}\)

\(=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{\left(n-1\right)!}-\frac{1}{n!}\)

\(=1-\frac{1}{n!}\)

Khách vãng lai đã xóa
Xyz OLM
9 tháng 11 2019 lúc 17:53

3) a) Ta có : \(P=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{100}\)

\(=\frac{1}{101}+\frac{1}{102}+....+\frac{1}{199}+\frac{1}{200}\left(đpcm\right)\)

Khách vãng lai đã xóa
Vũ Đặng Nhật Linh
12 tháng 11 2019 lúc 21:08

Thanks !!! 

Khách vãng lai đã xóa
kagamine rin len
Xem chi tiết
Quỳnh Mai Aquarius
Xem chi tiết
Hồ Minh Phi
Xem chi tiết
Wayne Rooney
Xem chi tiết
Namikaze Minato
Xem chi tiết
roronoa zoro
Xem chi tiết
ST
9 tháng 1 2018 lúc 13:58

Đặt A = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}=1-\frac{1}{2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

...........

\(\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}=\frac{1}{n-1}-\frac{1}{n}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}< 1\) (1)

Mà \(A>0\) (2)

Từ (1) và (2) => 0 < A < 1 => đpcm

khoimzx
Xem chi tiết
Akai Haruma
31 tháng 10 2020 lúc 13:59

Lời giải:

Chứng minh vế thứ nhất:

Với mọi số tự nhiên $i< n$ ta có: $\frac{1}{n+i}> \frac{1}{n+n}$. Thay $i=1,2,...$ ta có:

$\frac{1}{n+1}>\frac{1}{n+n}$

$\frac{1}{n+2}>\frac{1}{n+n}$

.....

Do đó: $\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n}>\frac{1}{n+n}+\frac{1}{n+n}+...+\frac{1}{n+n}=\frac{n}{n+n}=\frac{1}{2}$

(đpcm)

Vế thứ hai có vẻ không đúng lắm, vì $n$ càng tăng thì giá trị của tổng càng tăng theo nên mình nghĩ khi $n$ tiến tới vô cực thì tổng trên cũng vượt khỏi $\frac{3}{4}$