Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngọc Minh Phương
Xem chi tiết
Trần Tuấn Hoàng
25 tháng 3 2022 lúc 21:11

-Đề sai rồi bạn ạ.

le hoang
Xem chi tiết
Siêu Nhân Lê
Xem chi tiết
Siêu Nhân Lê
Xem chi tiết
Nguyen Tran Tuan Hung
Xem chi tiết
VRCT_Ran Love Shinichi
Xem chi tiết
Dương Lam Hàng
27 tháng 8 2018 lúc 16:16

Vì x;y;z >0

Nên áp dụng BĐT Cô-Si ta có: \(x+y\ge2\sqrt{xy}\Rightarrow\frac{x+y}{2}\ge\sqrt{xy}\)

                                              \(y+z\ge2\sqrt{yz}\Rightarrow\frac{y+z}{2}\ge\sqrt{yz}\)

                                              \(x+z\ge2\sqrt{xz}\Rightarrow\frac{x+z}{2}\ge\sqrt{xz}\)

CỘng vế theo vế ta được: \(\frac{x+y}{2}+\frac{y+z}{2}+\frac{x+z}{2}=\frac{2x+2y+2z}{2}=\frac{2\left(x+y+z\right)}{2}=x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)

P/s: sai sót xin bỏ qua cho

Tùng Nghiêm
27 tháng 8 2018 lúc 16:19

Áp dụng bất đẳng thức Cô-si ta có

x+y\(\ge2\sqrt{xy}\)

\(y+z\ge2\sqrt{yz}\)

\(x+z\ge2\sqrt{xz}\)

Từ đó suy ra

\(x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)

Oo Bản tình ca ác quỷ oO
Xem chi tiết
Witch Rose
9 tháng 7 2017 lúc 22:32

áp dụng bđt cauchy:

\(\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{x}.\frac{1}{y}}=\frac{2}{\sqrt{xy}}.\)

Tượng tự \(\frac{1}{y}+\frac{1}{z}\ge\frac{2}{\sqrt{yz}},\frac{1}{z}+\frac{1}{x}\ge\frac{2}{\sqrt{xz}}.\)

=>2VT>=2Vp

<=>VT>=VP

dấu = xảy ra khi x=y=z

Thắng Nguyễn
9 tháng 7 2017 lúc 22:31

By AM-GM we have:

\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}};\frac{1}{y}+\frac{1}{z}\ge\frac{2}{\sqrt{yz}};\frac{1}{x}+\frac{1}{z}\ge\frac{2}{\sqrt{xz}}\)

Cộng theo vế rồi rút gọn là có ĐPCM

Xảy ra khi x=y=z

Siêu Nhân Lê
Xem chi tiết
camcon
Xem chi tiết
Trên con đường thành côn...
31 tháng 10 2021 lúc 9:25

Đề lạ thế bạn ơi! Vế trái luôn không âm mà vế phải luôn không dương nên đây là điều hiển nhiên.

Mình nghĩ đề phải chứng minh thế này:

\(x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)

Nếu thế thì cách làm như sau:

Ta có: Do x, y, z không âm nên:

\(\left\{{}\begin{matrix}\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\\\left(\sqrt{y}-\sqrt{z}\right)^2\ge0\\\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y-2\sqrt{xy}\ge0\\y+z-2\sqrt{yz}\ge0\\z+x-2\sqrt{xz}\ge0\end{matrix}\right.\)

\(\Rightarrow2\left(x+y+z\right)\ge2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\right)\)

\(\Leftrightarrow x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\left(đpcm\right)\)

Dấu "=" xảy ra khi và chỉ khi \(\sqrt{x}=\sqrt{y}=\sqrt{z}\Leftrightarrow x=y=z\)