tìm x,y thuôc Q biết x-y=2(x+y) =x:y
Tìm x,y biết:\(x-y=2\left(x+y\right)=x:y\)
Tìm x,y biết:
x-y=2(x+y)=x:y
x+y=xy=x:y
Tìm x,y biết:
x-y=2(x+y)=x:y
x+y=xy=x:y
Tìm x,y biết:
x-y=2(x+y)=x:y
x+y=xy=x:y
a) x - y = 2(x+y) => x - y = 2x + 2y => x - 2x = y + 2y => - x = 3y => x: y = -3 và x = -3y
Mà x - y = x: y nên (-3y) - y = -3 => -4y = -3 => y = 3/4 => x = -9/4
b) Tương tự,
a) x - y = 2(x+y)
=> x - y = 2x + 2y
=> x - 2x = y + 2y
=> - x = 3y
=> x: y = -3 và x = -3y
do x - y = x: y nên (-3y) - y = -3
=> -4y = -3
=> y = \(\frac{3}{4}\)
=> x = \(-\frac{9}{4}\)
P/s hok tốt
Tìm x ; y thuộc Q
biết x+y = x.2+y.2= x:y
minh tick cho
Đề `:` Tìm `x;y` biết `:`
`a.` `x:y=20:9` và `x-y=-44`
`b.` `x:y=` 2 `1/2` và `x+y=40`
`c.` `x:3=y:16` và `3x-y=70`
`d.` `x/2` `=y/7` và `x`. `y=56`
a) Ta có: \(\dfrac{x}{y}=\dfrac{20}{9}\Rightarrow\dfrac{x}{20}=\dfrac{y}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{20}=\dfrac{y}{9}=\dfrac{x-y}{20-9}=\dfrac{-44}{11}=-4\)
\(\Rightarrow\left\{{}\begin{matrix}x=20\cdot-4=-80\\y=-4\cdot9=-36\end{matrix}\right.\)
b) \(\dfrac{x}{y}=2\dfrac{1}{2}\Rightarrow\dfrac{x}{y}=\dfrac{5}{2}\Rightarrow\dfrac{x}{5}=\dfrac{y}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{2}\Rightarrow\dfrac{x+y}{5+2}=\dfrac{40}{7}\)
\(\Rightarrow\left\{{}\begin{matrix}\text{x}=\dfrac{40}{7}\cdot5=\dfrac{200}{7}\\y=\dfrac{40}{7}\cdot2=\dfrac{80}{7}\end{matrix}\right.\)
c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{16}=\dfrac{3x-y}{3\cdot3-16}=\dfrac{70}{-7}=-10\)
=>\(x=-10\cdot3=-30;y=-10\cdot16=-160\)
d: Đặt \(\dfrac{x}{2}=\dfrac{y}{7}=k\)
=>x=2k; y=7k
x*y=56
=>\(2k\cdot7k=56\)
=>\(14k^2=56\)
=>\(k^2=4\)
TH1: k=2
=>\(x=2\cdot2=4;y=7\cdot2=14\)
TH2: k=-2
=>\(x=-2\cdot2=-4;y=-2\cdot7=-14\)
tìm hai số hữu tỉ x,y biết rằng:
a) x-y=x.y=x:y
b) x-y=2.(x+y)=x:y
Tìm số hữu tỉ x;y biết:
a) x+y=xy=x-y=x:y (y khác 0)
b)2(x+y)=x-y=x:y (y khác 0)
Tìm x, y,z thỏa mãn :
x+y+z+4=2√x−3+2√y+2+4√z−1
( Biết rằng x, y, z thuôc R và x≥3·y≥2·z≥1)
chuyển vế rồi thêm bớt cậu sẽ có rồi tìm được x=1 y=1 z=4
\(\left(x-2\sqrt{x}+1\right)+\left(y-2\sqrt{y}+1\right)+\left(z-4\sqrt{z}+4\right)=0\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y}-1\right)^2+\left(\sqrt{z}-2\right)^2=0\)