a) Ta có: \(\dfrac{x}{y}=\dfrac{20}{9}\Rightarrow\dfrac{x}{20}=\dfrac{y}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{20}=\dfrac{y}{9}=\dfrac{x-y}{20-9}=\dfrac{-44}{11}=-4\)
\(\Rightarrow\left\{{}\begin{matrix}x=20\cdot-4=-80\\y=-4\cdot9=-36\end{matrix}\right.\)
b) \(\dfrac{x}{y}=2\dfrac{1}{2}\Rightarrow\dfrac{x}{y}=\dfrac{5}{2}\Rightarrow\dfrac{x}{5}=\dfrac{y}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{2}\Rightarrow\dfrac{x+y}{5+2}=\dfrac{40}{7}\)
\(\Rightarrow\left\{{}\begin{matrix}\text{x}=\dfrac{40}{7}\cdot5=\dfrac{200}{7}\\y=\dfrac{40}{7}\cdot2=\dfrac{80}{7}\end{matrix}\right.\)
c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{16}=\dfrac{3x-y}{3\cdot3-16}=\dfrac{70}{-7}=-10\)
=>\(x=-10\cdot3=-30;y=-10\cdot16=-160\)
d: Đặt \(\dfrac{x}{2}=\dfrac{y}{7}=k\)
=>x=2k; y=7k
x*y=56
=>\(2k\cdot7k=56\)
=>\(14k^2=56\)
=>\(k^2=4\)
TH1: k=2
=>\(x=2\cdot2=4;y=7\cdot2=14\)
TH2: k=-2
=>\(x=-2\cdot2=-4;y=-2\cdot7=-14\)