Cho \(a,b,c\) là ba cạnh của tam giác CMR \(A=\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\)
Cho a,b,c là độ dài ba cạnh của một tam giác. CMR:\(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\)
Do a;b;c là 3 cạnh tam giác nên
\(\hept{\begin{cases}a+b>c\\b+c>a\\c+a>b\end{cases}\Rightarrow\hept{\begin{cases}a+b-c>0\\b+c-a>0\\c+a-b>0\end{cases}}}\)
Đặt \(b+c-a=x;a+c-b=y;a+b-c=z\)
Gọi \(A=\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\)
\(\Rightarrow2A=\frac{\left(y+z\right)}{x}+\frac{\left(x+z\right)}{y}+\frac{\left(x+y\right)}{z}\)
\(=\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)\)
Rồi dùng Cô-si
\(\Rightarrow2A\ge6\)
\(\Leftrightarrow A\ge3\)
Dấu = xảy ra khi a=b=c
cho a,b,c la ba cạnh tam giác. CMR:
\(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\)
Áp dụng BĐT AM-GM ta có \(\text{∑}\frac{3}{b+c-a}\ge3\sqrt[3]{\frac{abc}{\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}}\ge3\)
Dấu đẳng thức xảy ra khi và chỉ khi a = b = c.
Cho a,b,c là độ dài ba cạnh của một tam giác có chu vi là 3:
CMR: \(\sqrt{\frac{ab}{a+b-c}}+\sqrt{\frac{bc}{b+c-a}}+\sqrt{\frac{ca}{c+a-b}}\ge3\)
Do a,b,c là 3 cạnh tam giác nên \(a+b-c>0;b+c-a>0;c+a-b>0\)
Đặt \(x=b+c-a>0\)
\(y=a+c-b>0\)
\(z=a+b-c>0\)
\(\Rightarrow a=\frac{"y+z"}{2}\)
\(\Rightarrow b=\frac{"x+z"}{2}\)
\(\Rightarrow c=\frac{"x+y"}{2}\)
\(A=\frac{a}{"b+c-a"}+\frac{b}{"a+c-b"}+\frac{c}{"a+b-c"}\)
\(=\frac{"y+z"}{"2x"}+\frac{"x+z"}{"2y"}+\frac{"x+y"}{"2z"}\)
\(=\frac{1}{2}."\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{y}{z}+\frac{z}{y}"\)
Áp dụng công thức bdt Cauchy cho 2 số :
\(\frac{x}{y}+\frac{y}{x}\ge2\)
\(\frac{x}{z}+\frac{z}{x}\ge2\)
\(\frac{y}{z}+\frac{z}{y}\ge2\)
Cộng 3 bdt trên, suy ra :
\("\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{y}{z}+\frac{z}{y}"\ge6\)
\(\Rightarrow A\ge\frac{1}{2}.6=3\) "dpcm"
P/s: Nhớ thay thế dấu ngoặc kép thành dấu ngoặc đơn nhé
cho a,b,c là 3 cạnh của tam giác CMR:
\(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\)
\(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\)
\(=\frac{a^2}{ab+ca-a^2}+\frac{b^2}{ab+bc-b^2}+\frac{c^2}{ca+bc-c^2}\)
\(\ge\frac{\left(a+b+c\right)^2}{2ab+2bc+2ca-a^2-b^2-c^2}\)
\(\ge\frac{3\left(ab+bc+ca\right)}{2ab+2bc+2ca-ab-bc-ca}=3\)
\(VT=\frac{2\left(a-b\right)^2}{\left(b+c-a\right)\left(c+a-b\right)}+\frac{2\left(b-c\right)^2}{\left(c+a-b\right)\left(a+b-c\right)}+\frac{2\left(a-c\right)^2}{\left(a+b-c\right)\left(b+c-a\right)}+3\ge3\)
Cách khác Đặt \(\hept{\begin{cases}b+c-a=x\\a+c-b=y\\a+b-c=z\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}c=\frac{x+y}{2}\\b=\frac{x+z}{2}\\a=\frac{z+y}{2}\end{cases}}\)
BĐT cần CM \(\Leftrightarrow\frac{z+y}{2x}+\frac{x+z}{2y}+\frac{x+y}{2z}\ge3\)
\(\Leftrightarrow\frac{z}{x}+\frac{y}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}\ge6\)
Đúng (do \(\frac{x}{y}+\frac{y}{x}\ge2;\frac{x}{z}+\frac{z}{x}\ge2;\frac{z}{y}+\frac{y}{z}\ge2\))
Dấu "="
Cho 3 cạnh của 1 tam giác CMR
\(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\)
https://olm.vn/hoi-dap/detail/12121415915.html
vô đi rồi k cho mk
Ta co:
\(\frac{a^2}{ab+ca-a^2}+\frac{b^2}{ab+bc-b^2}+\frac{c^2}{ca+bc-c^2}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)-\left(a^2+b^2+c^2\right)}\)
\(\ge\frac{\left(a+b+c\right)^2}{ab+bc+ca}\ge\frac{\left(a+b+c\right)^2}{\frac{\left(a+b+c\right)^2}{3}}=3\)
Dau '=' xay ra khi \(a=b=c\)
Cho a,b,c là 3 cạnh 1 tam giác. CMR: \(\frac{a^2}{b+c-a}+\frac{b^2}{a+c-b}+\frac{c^2}{a+b-c}\ge3\)
Đặt \(\hept{\begin{cases}b+c-a=x\\a+c-b=y\\a+b-c=z\end{cases}}\)
vì a,b, c là độ dài 3 cạnh của 1 tam giác => \(\hept{\begin{cases}b+c>a\\c+a>b\\a+b>c\end{cases}}\Leftrightarrow\hept{\begin{cases}b+c-a>0\\c+a-b>0\\a+b-c>0\end{cases}\Rightarrow x,y,z>0}\)
và \(\hept{\begin{cases}2c=x+y\\2a=y+z\\2b=x+z\end{cases}\Rightarrow\hept{\begin{cases}c=\frac{x+y}{2}\\a=\frac{y+z}{2}\\b=\frac{x+z}{2}\end{cases}}\Rightarrow\frac{a}{b+c-a}=\frac{\frac{y+z}{2}}{x}=\frac{y+z}{2x}}\)
Tương tự: \(\hept{\begin{cases}\frac{b}{c+a-b}=\frac{x+z}{2y}\\\frac{c}{a+b-c}=\frac{x+y}{2z}\end{cases}}\)
\(\Rightarrow\frac{a}{b+c-a}+\frac{b}{c+a-b}+\frac{c}{a+b-c}=\frac{y+z}{2x}+\frac{x+z}{2y}+\frac{x+y}{2z}\)
\(=\frac{1}{2}\left(\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}\right)\)
\(=\frac{1}{2}\left(\frac{y}{z}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}\right)\)
\(=\frac{1}{2}\left[\left(\frac{y}{x}+\frac{x}{y}\right)+\left(\frac{z}{x}+\frac{x}{z}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)\right]\ge\frac{1}{2}\left(2+2+2\right)\) vì \(\hept{\begin{cases}\frac{y}{x}+\frac{x}{y}\ge2\\\frac{z}{x}+\frac{x}{z}\ge2\\\frac{y}{z}+\frac{z}{y}\ge2\end{cases}}\)
Dấu "=" khi và chỉ khi \(\hept{\begin{cases}\frac{y}{x}=\frac{x}{y}\\\frac{z}{x}=\frac{x}{z}\\\frac{y}{z}=\frac{z}{y}\end{cases}}\) và x,y,z>0
<=> x=y=z
=> a+b-c=c+a-b = a+b-c
<=> a+b+c-2a=a+b+c-2b=a+c+c-2c
<=> a=b=c
Cho a, b, c là độ dài ba cạnh của một tam giác. Chứng minh rằng:
\(\frac{a}{b+c-a}+\frac{b}{c+a-b}+\frac{c}{a+b-c}\ge3\)
Để mình hướng dẫn bằng lời nhé . Nếu đánh ra hết thì rất dài và không tốt cho cậu :
Đặt x= mẫu thứ nhất (1)
y=mẫu thứ hai (2)
z=mẫu thứ ba (3)
Cộng vế với vế của (1) và (2) ta được .... Cậu tự tính cho tốt.
Sau đó rút c= x+y/2(@@@)
Tương tự với (2) và (3), (1) và (2)
Ta có b=x+z/2(@@)... a=y+z/2(@)
Cộng vế với vế của (@), (@@), (@@@) ta có
vế trái bằng \(\frac{y+z}{2x}+\frac{x+z}{2y}+\frac{y+x}{2z}\)
Đặt 1/2 ra sau đó tách các phân số ra như sau
\(\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{y}{z}+\frac{x}{z}\)
Dễ dàng chuyển chúng sang BĐT Cauchy sẽ được kết quả cuối cùng là điều cần phải CM... Khó hiểu có thể hỏi lại
ai có thể giải ra thành bài luôn được ko, bạn ghi mình khồn hiểu
đặt , a+b-c , c+a-b , a+b-c = x,y,z
\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\)
\(a=\frac{\left(y+z\right)}{2},b=\frac{\left(x+z\right)}{2},c=\frac{\left(x+y\right)}{2}\)
như vậy Pt phải là
\(\frac{\left(y+z\right)}{\frac{2}{x}}+\frac{\left(x+z\right)}{\frac{2}{y}}+\frac{\left(x+y\right)}{\frac{2}{z}}\)
vì (b+c-a) =x
Đa giang sai chắc chắn luôn
bài 1:Cho 3 số a,b,c có tổng là 1
CMR: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
bài 2 cho a,b,c là 3 cạnh của tam giác:
CMR:\(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\)
Bài số ảo nhờ
kí tện
Dân game thủ
kakakkakak tk cho bố m à
Bài 1 : Đề cần có điều kiện a,b,c là các số thực dương
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(=1\cdot\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)( vì \(a+b+c=1\))
Áp dụng BĐT Cauchy cho bộ 3 số dương ta có :
\(\hept{\begin{cases}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}=\frac{3}{\sqrt[3]{abc}}\end{cases}}\)
Khi đó : \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}\cdot\frac{3}{\sqrt[3]{abc}}=\frac{3\cdot3\cdot\sqrt[3]{abc}}{\sqrt[3]{abc}}=9\)
Hay \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)(đpcm)
Bài 2:
\(\hept{\begin{cases}b+c-a=x\\a+c-b=y\\a+b-c=z\end{cases}\Rightarrow\hept{\begin{cases}a=\frac{y+z}{2}\\b=\frac{x+z}{2}\\c=\frac{x+y}{2}\end{cases}}}\)
\(\Rightarrow\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\)
\(=\frac{\frac{y+z}{2}}{x}+\frac{\frac{x+z}{2}}{y}+\frac{\frac{x+y}{2}}{z}\)
\(=\frac{y}{2x}+\frac{z}{2x}+\frac{x}{2y}+\frac{z}{2y}+\frac{x}{2z}+\frac{y}{2z}\)
Dùng AM-GM tự làm nốt
Cho a;b;c là 3 cạnh tam giác
CMR: \(\sqrt{\frac{a}{b+c-a}}+\sqrt{\frac{b}{c+a-b}}+\sqrt{\frac{c}{a+b-c}}\ge3\)
Ta có :\(2\sqrt{\frac{b+c-a}{a}}\le\frac{b+c-a}{a}+1=\frac{b+c}{a}\)
<=> \(\sqrt{\frac{a}{b+c-a}}\ge\frac{2a}{b+c}\)
\(CMTT\)=> \(\sqrt{\frac{b}{c+a-b}}\ge\frac{2b}{c+a}\)
\(\sqrt{\frac{c}{a+b-c}}\ge\frac{2c}{a+b}\)
=>\(VT\)\(\ge\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}\)
\(CM\)\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
=> \(\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}\ge3\)
=>\(VT\ge3\)