Cho a,b là các số nguyên dương và x+y=10
Tính giá trị biểu thức \(M=\frac{1}{x}+\frac{1}{y}\)
cho x, y là các số nguyên dương thoả mãn x+y=1
Tìm giá trị nhỏ nhất của biểu thức \(B=\frac{1}{x^3+y^3}+\frac{1}{xy}\)
cho x, y là các số nguyên dương thoả mãn x+y=1
Tìm giá trị nhỏ nhất của biểu thức \(B=\frac{1}{x^3+y^3}+\frac{1}{xy}\)
Cho x,y,z là các số nguyên dương. CMR biểu thức sau không có giá trị nguyên
\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}\)
Vì x,y,z là các số dương nên : \(\frac{x}{x+y}< \frac{x+z}{x+y+z}\) ; \(\frac{y}{y+z}< \frac{y+x}{x+y+z}\) ; \(\frac{z}{z+x}< \frac{z+y}{x+y+z}\)
\(\Rightarrow A< \frac{2\left(x+y+z\right)}{x+y+z}=2\) (1)
Mặt khác ta lại có : \(x+y< x+y+z\Rightarrow\)\(\frac{x}{x+y}>\frac{x}{x+y+z}\)
Tương tự : \(\frac{y}{y+z}>\frac{y}{x+y+z};\frac{z}{z+x}>\frac{z}{x+y+z}\)
\(\Rightarrow A>\frac{x+y+z}{x+y+z}=1\) (2)
Từ (1) và (2) suy ra : \(1< A< 2\) => A không có giá trị nguyên
\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}\)
\(A>\frac{x+y+z}{x+y+z}\)
\(A>1\left(1\right)\)
Áp dụng \(\frac{a}{b}< 1\Leftrightarrow\frac{a}{b}< \frac{a+m}{b+m}\) (a,b,m \(\in\) N*) ta có:
\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}< \frac{x+z}{x+y+z}+\frac{x+y}{x+y+z}+\frac{z+y}{x+y+z}\)
\(A< \frac{2.\left(x+y+z\right)}{x+y+z}\)
\(A< 2\left(2\right)\)
Từ (1) và (2) => 1 < A < 2
=> A không là số nguyên (đpcm)
Ta có :
\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}\)
\(\Rightarrow A=\frac{x+y-y}{x+y}+\frac{y+z-z}{y+z}+\frac{z+x-x}{z+x}\)
\(\Rightarrow A=1-\frac{y}{x+y}+1-\frac{z}{y+z}+1-\frac{x}{z+x}\)
\(\Rightarrow A=3-\left(\frac{y}{x+y}+\frac{z}{y+z}+\frac{x}{z+x}\right)\)
Mặt khác vì A nguyên dương
\(\Rightarrow\begin{cases}\frac{x}{x+z}>\frac{x}{x+y+z}\\\frac{y}{y+x}>\frac{y}{x+y+z}\\\frac{z}{z+y}>\frac{z}{x+y+z}\end{cases}\)\(\Rightarrow\frac{y}{x+y}+\frac{z}{y+z}+\frac{x}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}\)
\(\Rightarrow\frac{y}{x+y}+\frac{z}{y+z}+\frac{x}{z+x}>1\)
\(\Rightarrow-\left(\frac{y}{x+y}+\frac{z}{y+z}+\frac{x}{z+x}\right)< -1\)
\(\Rightarrow3-\left(\frac{y}{x+y}+\frac{z}{y+z}+\frac{x}{z+x}\right)< 2\left(1\right)\)
Mà \(\begin{cases}\frac{x}{x+y}>\frac{x}{x+y+z}\\\frac{y}{y+z}>\frac{y}{x+y+z}\\\frac{z}{x+z}>\frac{z}{x+y+z}\end{cases}\)\(\Rightarrow\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=1\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow1< A< 2\)
=> A không phải là số nguyên
Cho biểu thức \(A=\frac{4xy}{x^2-y^2}:\left(\frac{1}{x^2-y^2}+\frac{1}{x^2+2xy+y^2}\right)\). Nếu x,y là các số thực thỏa mãn \(x^2+3y^2+2x-2y=1\). Tìm các giá trị nguyên dương của A.
Cho biểu thức \(A=\frac{4xy}{y^2-x^2}:\left(\frac{1}{y^2-x^2}+\frac{1}{y^2+2xy+x^2}\right)\)
a) Tìm điều kiện của x, y để giá trị của A được xác định
b) Rút gọn A
c) Nếu x, y là các số thực làm cho A xác định và thỏa mãn: \(3x^2+y^2+2x-2y-1\)
Hãy tìm tất cả các giá trị nguyên dương của A
Cho biểu thức P =\(\frac{4xy}{y^2-x^2}:\left(\frac{1}{y^2-x^2}+\frac{1}{y^2+2xy+x^2}\right)\)
a) Tìm điều kiện của x,y để giá trị của A được xác định
b) Rút gọn A
c) Nếu x;y là các số thực làm cho A xác định và thỏa mãn: 3x2+y2+2x-2y=1, hãy tìm tất cả các giá trị nguyên dương của A
Cho x;y là các số nguyên dương sao cho : \(A=\frac{x^4+y^4}{15}\)cũng là số nguyên dương . Chứng minh x;y đều chia hết cho 3 và 5. từ đó tính giá trị nhỏ nhất của biểu thức A
giả sử x và y đều không chia hết cho 3
\(\hept{\begin{cases}x^4\equiv1\left(mod3\right)\\y^4\equiv1\left(mod3\right)\end{cases}\Rightarrow x^4+y^4\equiv2\left(mod3\right)\Rightarrow\frac{x^4+y^4}{15}\notin N}\)
=> x và y đều phải chi hết cho 3
tương tự sử dụng với mod 5, ( lũy thừa bậc 4 của 1 số luôn đồng dư với 0 hoạc 1 theo mod5 )
=> x và y đề phải chia hết cho 5
=> x,y đều chia hết cho 15
mà số nguyên dương nhỏ nhất chia hết cho 15 là 15 => x=y=15
thay vào và tìm min nhé
Cho x,y,z là các số nguyên dương. Chứng minh rằng biểu thức sau không có giá trị nguyên. : A=\(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}\)
Vì x, y, z là các số nguyên dương
Ta có: x/x+y>x/x+y+z
Cho x,y,z là các số nguyên dương. Chứng minh rằng biểu thức sau không có giá trị nguyên:
\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}\)
A = \(\frac{x+y-y}{x+y}+\frac{y+z-z}{y+z}+\frac{z+x-x}{x+z}\)
A=3 \(-\left(\frac{x}{x+z}+\frac{y}{x+y}+\frac{z}{y+z}\right)\)
mà \(\frac{x}{x+z}>\frac{x}{x+y+z};\frac{y}{y+z}>\frac{y}{x+y+z};\frac{z}{x+z}>\frac{z}{x+y+z}\)
=> A <2 (1)
mặt khác A=\(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{x+z}\)
mà \(\frac{x}{x+y}>\frac{x}{x+y+z};\frac{y}{y+z}>\frac{y}{x+y+z};\frac{z}{x+z}>\frac{z}{x+y+z}\)
=> A >1 (2)
từ (1) và (2) => 1<A<2 => A ko phải là số nguyên