Tìm các cặp giá trị nguyên x;y sao cho :x-2xy+y=0
tìm các cặp giá trị nguyên dương x,y thỏa mãn 4x+5y=65
Do 5y chia hết cho 5; 65 chia hết cho 5 => 4x chia hết cho 5
Mà (4;5)=1 => x chia hết cho 5
Mà 0 < 4x < 65
=> 0 < x < 17
=> x thuộc {5 ; 10 ; 15}
+ Với x = 5; ta có: 4 × 5 + 5 × y = 65
=> 20 + 5 x y = 65
=> 5 x y = 65 - 20 = 45
=> y = 45 : 5 = 9
+ Với x = 10, ta có: 4 × 10 + 5 x y = 65
=> 40 + 5 × y = 65
=> 5 x y = 65 - 40 = 25
=> y = 25 : 5 = 5
+ Với x = 15, ta có: 4 × 15 + 5 × y = 65
=> 60 + 5 × y = 65
=> 5 x y = 65 - 60 = 5
=> y = 5 : 5 = 1
Vậy x = 5; y = 9 hoặc x = 10; y = 5 hoặc x = 15; y = 1
chắc thek chứ mik ko chắc ăn
tìm các cặp số nguyên(x,y) sao cho x+y=4 và( giá trị tuyệt đối (x+2)+giá trị tuyệt đối của y) = 6
Tìm tất cả các cặp số nguyên dương (x,y) sao cho \(\dfrac{x^2-2}{xy+2}\) có giá trị là số nguyên
- Với \(x=1\) ko thỏa mãn
- Với \(x=2\Rightarrow\dfrac{2}{2y+2}\in Z\Rightarrow\dfrac{1}{y+1}\in Z\Rightarrow y=\left\{-2;0\right\}\) ko thỏa mãn
- Với \(x\ge3\)
\(x^2-2⋮xy+2\Rightarrow x\left(xy+2\right)-y\left(x^2-2\right)⋮xy+2\)
\(\Rightarrow2\left(x+y\right)⋮xy+2\)
\(\Rightarrow\left(x-2\right)\left(y-2\right)\le2\)
\(\Rightarrow y-2\le\dfrac{2}{x-2}\le\dfrac{2}{3-2}=2\Rightarrow y\le4\)
\(\Rightarrow y=\left\{1;2;3;4\right\}\)
Lần lượt thay 3 giá trị của y vào pt biểu thức ban đầu
Ví dụ: \(y=1\Rightarrow\dfrac{x^2-2}{x+2}\in Z\Rightarrow x-2+\dfrac{2}{x+2}\in Z\)
\(\Rightarrow x+2=Ư\left(2\right)\Rightarrow\) ko tồn tại x nguyên dương t/m
Tương tự...
tìm các cặp giá trị x,y nguyên thỏa mãn x/8-2/2y+3=7/12
Đáp án:
Giải thích các bước giải:
Ta có:
Vì
là cặp ước của
Mà chia dư lẻ
Tìm các cặp giá trị x,y nguyên thoả mãn : x(y+3)+y=4
x(y+3) + y= 4
<=> x(y+3) +(y+3) = 7
<=> (x+1)(y+3)=7
vì x,y thuộc Z => tự làm tiếp
Tìm các cặp số nguyên x, y sao cho
2. giá trị tuyệt đối của x + 3.giá trị tuyệt đối của y = 5
tìm các cặp số nguyên a,b để các biểu thức sau có giá trị là số nguyên
M= 3x(x+y) - 6(x+y)+1/x - 2
Cho biểu thức
A = 1/15 . 225/x+2 + 3/14 . 196/3x+6
a) Rút gọn A
b) Tìm các cặp số nguyên x để A có giá trị là 1 số nguyên
c) Trong các giá trị nguyên của A , tìm giá trị nhỏ nhất , lớn nhất
giúp mk nha !!!!
Tìm tất cả các cặp giá trị nguyên x, y thỏa mãn: x2 - 25 = y(y+6)
Lời giải:
$x^2-25=y(y+6)$
$\Leftrightarrow x^2-25=y^2+6y$
$\Leftrightarrow x^2-16=y^2+6y+9=(y+3)^2$
$\Leftrightarrow x^2-(y+3)^2=16$
$\Leftrightarrow (x-y-3)(x+y+3)=16$
Do $x,y$ nguyên nên $x-y-3, x+y+3$ cũng là số nguyên. Đến đây là dạng PT tích đơn giản rồi.
Lời giải:
$x^2-25=y(y+6)$
$\Leftrightarrow x^2-25=y^2+6y$
$\Leftrightarrow x^2-16=y^2+6y+9=(y+3)^2$
$\Leftrightarrow x^2-(y+3)^2=16$
$\Leftrightarrow (x-y-3)(x+y+3)=16$
Do $x,y$ nguyên nên $x-y-3, x+y+3$ cũng là số nguyên. Đến đây là dạng PT tích đơn giản rồi.