Tìm tất cả các số nguyên n để \(n^4+2n^3+2n^2+n+7\)là số chính phương
Tìm tất cả các số nguyên \(n\) sao cho \(n^4+2n^3+2n^2+n+7\) là số chính phương.
\(A=n^4+2n^3+2n^2+n+7\)
\(\Rightarrow A=n^4+2n^3+n^2+n^2+n+7\)
\(\Rightarrow A=\left(n^2+n\right)^2+n^2+n+\dfrac{1}{4}+\dfrac{27}{4}\)
\(\Rightarrow A=\left(n^2+n\right)^2+\left(n+\dfrac{1}{2}\right)^2+\dfrac{27}{4}\)
\(\Rightarrow A>\left(n^2+n\right)^2\left(1\right)\)
Ta lại có :
\(\left(n^2+n+1\right)^2-A\)
\(=n^4+n^2+1+2n^3+2n^2+2n-n^4-2n^3-2n^2-n-7\)
\(=n^2+n-6\)
Để \(n^2+n-6>0\)
\(\Leftrightarrow\left(n+3\right)\left(n-2\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}n< -3\\n>2\end{matrix}\right.\) \(\Rightarrow\left(n^2+n+1\right)^2>A\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\left(n^2+n\right)^2< A< \left(n^2+n+1\right)^2\)
Nên A không phải là số chính phương
Xét \(-3\le n\le2\)
Để A là số chính phương
\(\Rightarrow n\in\left\{-3;-2;-1;0;1;2\right\}\)
Thay các giá trị n vào A ta thấy với \(n=-3;n=2\) ta đều được \(A=49\) là số chính phương
\(\Rightarrow\left[{}\begin{matrix}n=-3\\n=2\end{matrix}\right.\) thỏa mãn đề bài
Tìm tất cả các số nguyên n sao cho n4+2n3+2n2+n+7 là số chính phương
Xét không thỏa mãn.
Xét
Với thì:
Mặt khác, xét :
với mọi
Như vậy , suy ra để $A$ là số chính phương thì
Suy ra
Tìm tất cả các số nguyên n sao cho : n4+ 2n3 + 2n2+ n +7 là số chính phương.
Tìm tất cả các số nguyên n sao cho: \(n^4+2n^3+2n^2+n+7\) là số chính phương.
\(n^4+2n^3+2n^2+n+7=k^2\)
\(\Leftrightarrow\left(n^2+n\right)^2+\left(n^2+n\right)+7=k^2\)
\(\Leftrightarrow4\left(n^2+n\right)^2+4\left(n^2+n\right)+1+27=4k^2\)
\(\Leftrightarrow\left(2n^2+2n+1\right)^2-4k^2=-27\)
\(\Leftrightarrow\left(2n^2+2n+1-2k\right)\left(2n^2+2n+1+2k\right)=-27\)
Làm nôt
TÌm tất cả các số nguyen n sao cho \(n^4+2n^3+2n^2+n+7\)là số chính phương
Tìm tất cả số nguyên \(n\) sao cho \(a=n^4+2n^3+2n^2+n+7\)là số chính phương.
Giả sử có số \(n\) thoả đề. Khi đó do \(a\) chính phương nên \(4a\) cũng chính phương.
Và \(4a=4n^4+8n^3+8n^2+4n+28=\left(2n^2+2n+1\right)^2+27\)
Như vậy sẽ có 2 số chính phương lệch nhau \(27\) đơn vị là số \(4a\) và \(\left(2n^2+2n+1\right)^2\).
Ta sẽ tìm 2 số chính phương như thế.
-----
Ta sẽ giải pt nghiệm nguyên dương \(m^2-n^2=27=1.27=3.9\)
Ta có bảng:
\(m+n\) | \(27\) | \(9\) |
\(m-n\) | \(1\) | \(3\) |
\(m^2\) | \(196\) | \(36\) |
\(n^2\) | \(169\) | \(9\) |
------
Theo bảng trên thì số \(\left(2n^2+2n+1\right)^2\) (số chính phương nhỏ hơn) sẽ nhận giá trị \(169\) và \(9\).
Đến đây bạn tự giải tiếp nha bạn.
Đáp số: \(2;-3\)
tìm tất cả các số nguyên dương n để 2n + 3n + 4n là 1 số chính phương
Lời giải:
Đặt tổng trên là $A$.
Với $n=1$ thì $2^n+3^n+4^n=9$ là scp (thỏa mãn)
Xét $n\geq 2$. Khi đó:
$2^n\equiv 0\pmod 4; 4^n\equiv 0\pmod 4$
$\Rightarrow A=2^n+3^n+4^n\equiv 3^n\equiv (-1)^n\pmod 4$
Vì 1 scp khi chia 4 chỉ có thể có dư là $0$ hoặc $1$ nên $n$ phải là số chẵn.
Đặt $n=2k$ với $k$ nguyên dương.
Khi đó: $A=2^{2k}+3^{2k}+4^{2k}\equiv (-1)^{2k}+0+1^{2k}\equiv 2\pmod 3$
Một scp khi chia 3 chỉ có thể có dư là 0 hoặc 1 nên việc chia 3 dư 2 như trên là vô lý
Vậy TH $n\geq 2$ không thỏa mãn. Tức là chỉ có 1 giá trị $n=1$ thỏa mãn.
tìm tất cả n là số tự nhiên để 2n+1, 3n+1 là số chính phương, 2n+9 là số nguyên tố
Do \(2n+1\) và \(3n+1\) là các số chính phương dương nên tồn tại các số nguyên dương a,b sao cho \(2n+1\)\(=a^2\) và \(3n+1=b^2\). Khi đó ta có:
\(2n+9=25.\left(2n+1\right)-16.\left(3n+1\right)=25a^2-16b^2=\left(5a-4b\right).\left(5a+4b\right)\)
Do \(2n+9\) là nguyên tố,\(5a+4b>1\) và \(5a+4b>5a-4b\) nên ta phải có \(5a-4b=1\), tức là: \(b=\dfrac{5a-1}{4}\)
\(\Rightarrow\) ta có: \(\left\{{}\begin{matrix}2n+1=a^2\left(1\right)\\3n+1=\dfrac{\left(5a-1\right)^2}{16}\left(2\right)\end{matrix}\right.\)
Từ (1) : \(2n+1=a^2\Rightarrow n=\dfrac{a^2-1}{2}\) và a > 1 ( do n>0)
Thay vào (2): \(\dfrac{3.\left(a^2-1\right)}{2}+1=\dfrac{\left(5a-1\right)^2}{16}\) => (a - 1).(a - 9) = 0
=> a = 9. Từ đó ta có n = 40
Vậy duy nhất một giá trị n thỏa mãn yêu cầu đề bài là : n = 40
Tìm tất cả n là các số nguyên dương sao cho 60+2n-n^2 là số chính phương
ta có :