Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khiêm Nguyễn Gia
Xem chi tiết
Nguyễn Đức Trí
2 tháng 8 2023 lúc 17:47

\(A=n^4+2n^3+2n^2+n+7\)

\(\Rightarrow A=n^4+2n^3+n^2+n^2+n+7\)

\(\Rightarrow A=\left(n^2+n\right)^2+n^2+n+\dfrac{1}{4}+\dfrac{27}{4}\)

\(\Rightarrow A=\left(n^2+n\right)^2+\left(n+\dfrac{1}{2}\right)^2+\dfrac{27}{4}\)

\(\Rightarrow A>\left(n^2+n\right)^2\left(1\right)\)

Ta lại có :

\(\left(n^2+n+1\right)^2-A\)

\(=n^4+n^2+1+2n^3+2n^2+2n-n^4-2n^3-2n^2-n-7\)

\(=n^2+n-6\)

Để \(n^2+n-6>0\)

\(\Leftrightarrow\left(n+3\right)\left(n-2\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}n< -3\\n>2\end{matrix}\right.\) \(\Rightarrow\left(n^2+n+1\right)^2>A\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow\left(n^2+n\right)^2< A< \left(n^2+n+1\right)^2\)

Nên A không phải là số chính phương

Xét \(-3\le n\le2\)

Để A là số chính phương

\(\Rightarrow n\in\left\{-3;-2;-1;0;1;2\right\}\)

Thay các giá trị n vào A ta thấy với \(n=-3;n=2\) ta đều được \(A=49\) là số chính phương

\(\Rightarrow\left[{}\begin{matrix}n=-3\\n=2\end{matrix}\right.\) thỏa mãn đề bài

Nguyễn Cảnh Hoàng
Xem chi tiết
Thanh Nguyen Phuc
31 tháng 1 2021 lúc 21:29

Xét n=0 không thỏa mãn.

Xét n≥1

Với n∈N thì:A=n4+2n3+2n2+n+7=(n2+n)2+n2+n+7>(n2+n)2

Mặt khác, xét :

A−(n2+n+2)2=−3n2−3n+3<0 với mọi n≥1

⇔A<(n2+n+2)2

Như vậy (n2+n)2<A<(n2+n+2)2, suy ra để $A$ là số chính phương thì

A=(n2+n+1)2⇔n4+2n3+2n2+n+7=(n2+n+1)2

⇔−n2−n+6=0⇔(n−2)(n+3)=0

Suy ra 

Khách vãng lai đã xóa
Huỳnh Xuân Mai
Xem chi tiết
Lê Đình Nguyên
2 tháng 8 2023 lúc 16:33

2

kẹo bông xù
Xem chi tiết
alibaba nguyễn
27 tháng 9 2018 lúc 8:32

\(n^4+2n^3+2n^2+n+7=k^2\)

\(\Leftrightarrow\left(n^2+n\right)^2+\left(n^2+n\right)+7=k^2\)

\(\Leftrightarrow4\left(n^2+n\right)^2+4\left(n^2+n\right)+1+27=4k^2\)

\(\Leftrightarrow\left(2n^2+2n+1\right)^2-4k^2=-27\)

\(\Leftrightarrow\left(2n^2+2n+1-2k\right)\left(2n^2+2n+1+2k\right)=-27\)

Làm nôt

Aeris
Xem chi tiết
Lê Đình Nguyên
2 tháng 8 2023 lúc 16:33

2

hh hh
Xem chi tiết
Trần Quốc Đạt
19 tháng 1 2017 lúc 22:22

Giả sử có số \(n\) thoả đề. Khi đó do \(a\) chính phương nên \(4a\) cũng chính phương.

Và \(4a=4n^4+8n^3+8n^2+4n+28=\left(2n^2+2n+1\right)^2+27\)

Như vậy sẽ có 2 số chính phương lệch nhau \(27\) đơn vị là số \(4a\) và \(\left(2n^2+2n+1\right)^2\).

Ta sẽ tìm 2 số chính phương như thế.

-----

Ta sẽ giải pt nghiệm nguyên dương \(m^2-n^2=27=1.27=3.9\)

Ta có bảng: 

\(m+n\)\(27\)\(9\)
\(m-n\)\(1\)\(3\)
\(m^2\)\(196\)\(36\)
\(n^2\)\(169\)\(9\)

------

Theo bảng trên thì số \(\left(2n^2+2n+1\right)^2\) (số chính phương nhỏ hơn) sẽ nhận giá trị \(169\) và \(9\).

Đến đây bạn tự giải tiếp nha bạn.

Đáp số: \(2;-3\)

Future Trunks
19 tháng 1 2017 lúc 21:52

chịu rồi 

tk nhé 

thanks 

2222

Nguyễn Tuấn Anh
17 tháng 2 2017 lúc 11:38

n=2;n=-3 nhé

Nguyễn Việt Bách
Xem chi tiết
Akai Haruma
9 tháng 9 2023 lúc 23:49

Lời giải:

Đặt tổng trên là $A$.

Với $n=1$ thì $2^n+3^n+4^n=9$ là scp (thỏa mãn)

Xét $n\geq 2$. Khi đó:

$2^n\equiv 0\pmod 4; 4^n\equiv 0\pmod 4$

$\Rightarrow A=2^n+3^n+4^n\equiv 3^n\equiv (-1)^n\pmod 4$

Vì 1 scp khi chia 4 chỉ có thể có dư là $0$ hoặc $1$ nên $n$ phải là số chẵn.

Đặt $n=2k$ với $k$ nguyên dương.

Khi đó: $A=2^{2k}+3^{2k}+4^{2k}\equiv (-1)^{2k}+0+1^{2k}\equiv 2\pmod 3$
Một scp khi chia 3 chỉ có thể có dư là 0 hoặc 1 nên việc chia 3 dư 2 như trên là vô lý

Vậy TH $n\geq 2$ không thỏa mãn. Tức là chỉ có 1 giá trị $n=1$ thỏa mãn.

 

Công Nghiêm Chí
Xem chi tiết
Cấn Thị Vân Anh
27 tháng 5 2022 lúc 21:12

Do \(2n+1\) và \(3n+1\) là các số chính phương dương nên tồn tại các số nguyên dương a,b sao cho \(2n+1\)\(=a^2\) và \(3n+1=b^2\). Khi đó ta có:

\(2n+9=25.\left(2n+1\right)-16.\left(3n+1\right)=25a^2-16b^2=\left(5a-4b\right).\left(5a+4b\right)\)

Do \(2n+9\) là nguyên tố,\(5a+4b>1\) và \(5a+4b>5a-4b\) nên ta phải có \(5a-4b=1\), tức là: \(b=\dfrac{5a-1}{4}\)

\(\Rightarrow\) ta có: \(\left\{{}\begin{matrix}2n+1=a^2\left(1\right)\\3n+1=\dfrac{\left(5a-1\right)^2}{16}\left(2\right)\end{matrix}\right.\)

Từ (1) : \(2n+1=a^2\Rightarrow n=\dfrac{a^2-1}{2}\) và a > 1 ( do n>0)

Thay vào (2): \(\dfrac{3.\left(a^2-1\right)}{2}+1=\dfrac{\left(5a-1\right)^2}{16}\)  => (a - 1).(a - 9) = 0

=> a = 9. Từ đó ta có n = 40

Vậy duy nhất một giá trị n thỏa mãn yêu cầu đề bài là : n = 40

Bên nhau trọn đời
Xem chi tiết
Nguyễn Minh Quang
10 tháng 10 2021 lúc 7:48

ta có :

undefined

Khách vãng lai đã xóa