So sánh
\(C=\frac{1999^{2000}+1}{1999^{1999}+1}\)và \(D=\frac{1999^{1999}+1}{1999^{1998}+1}\)
So sánh: C=\frac{1999^2000+1/1999^1999+1} và D=\frac{1999^1999+1/1999^1998+1}
So sánh: C=1999^2000+1/1999^1999+1và D=1999^1999+1/1999^1998+1
Giúp với mình đang cần gấp
So sánh:
\(A=\dfrac{1999^{1999}+1}{1999^{1998}+1}\) ; \(B=\dfrac{1999^{2000}+1}{1999^{1999}+1}\)
Giúp với!
So sánh
\(A=\dfrac{1999^{1999}+1}{1999^{1998}+1}\) ; \(B=\dfrac{1999^{2000}+1}{1999^{1999}+1}\)
Ta có: \(B=\dfrac{1999^{2000}+1}{1999^{1999}+1}>1\) ( vì tử > mẫu )
Do đó: \(B=\dfrac{1999^{2000}+1}{1999^{1999}+1}>\dfrac{1999^{2000}+1+1998}{1999^{1999}+1+1998}=\dfrac{1999^{2000}+1999}{1999^{1999}+1999}=\dfrac{1999.\left(1999^{1999}+1\right)}{1999.\left(1999^{1998}+1\right)}=\dfrac{1999^{1999}+1}{1999^{1998}+1}=A\)
Vậy B > A
Chúc bạn học tốt
Tìm x,y \(\in Z\):
|x-3|.|x+3|=16
Chứng minh:
\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{2016^2}< \frac{1}{2}\)
So sánh:
\(A=\frac{1999^{1999}+1}{1999^{2000}+1}\)và \(B=\frac{1999^{1998}+1}{1999^{1999}+1}\)
SO sánh A và B Biết A=1999^1999+1/1999^2000 +1va B=1999^1998+1/1999^1999+1
3k cho câu trả lời đúng
ta thấy 19991999 + 1 / 19992000 + 1 < 1 và 1998 > 0
nên ta có: A < 19991999 + 1 + 1998 / 19992000 + 1 + 1998
< 19991999 + 1999 / 19992000 + 1999
< 1999(19991998 + 1) / 1999(19991999 + 1)
< 19991998 + 1 / 19991999 + 1
< B
Vậy A < B
để tui xem lại đã hink như tui làm bài này zùi
So sánh : C=1999^1999+1/1999^2000+1 và D=1999^1998+1/1999^1999+1
\(C=\frac{1999^{1999}+1}{1999^{2000}+1}<\frac{1999^{1999}+1+1998}{1999^{2000}+1+1998}\)
\(=\frac{1999^{1999}+1999}{1999^{2000}+1999}\)
\(=\frac{1999.\left(1999^{1998}+1\right)}{1999.\left(1999^{1999}+1\right)}\)
\(=\frac{1999^{1998}+1}{1999^{1999}+1}\)\(=D\)
=> C<D
Ai k mik mik k lại. chúc các bạn thi tốt
So sánh; A =19991999 + 1/ 19991998 + 1 và B = 19992000 + 1/ 19991999 +1
ta có: \(A=\frac{1999^{1999}+1}{1999^{1998}+1}=\frac{1999.\left(1999^{1998}+1\right)-1998}{1999^{1998}+1}=\frac{1999.\left(1999^{1998}+1\right)}{1999^{1998}+1}-\frac{1998}{1999^{1998}+1}\)
\(=1999-\frac{1998}{1999^{1998}+1}\)
\(B=\frac{1999^{2000}+1}{1999^{1999}+1}=\frac{1999.\left(1999^{1999}+1\right)-1998}{1999^{1999}+1}=\frac{1999.\left(1999^{1999}+1\right)}{1999^{1999}+1}-\frac{1998}{1999^{1999}+1}\)
\(=1999-\frac{1998}{1999^{1999}+1}\)
mà \(\frac{1998}{1999^{1998}+1}>\frac{1998}{1999^{1999}+1}\Rightarrow1999-\frac{1998}{1999^{1998}+1}< 1999-\frac{1998}{1999^{1999}+1}\)
\(\Rightarrow A< B\)
SO SÁNH A VÀ B
A= 13^16 + 1/13^17+1 VÀ B=13^15 +1 /13^16+1
A=1999^2000 +1 / 1999^1999 +1 VÀ B=1999^1999+1/1999^1998 +1
So sánh
a) \(\left(\frac{1}{10}\right)^{15}\) và \(\left(\frac{3}{10}\right)^{20}\)
b) \(A=\frac{13^{15}+1}{13^{16}+1}\) và B = \(\frac{13^{16}+1}{13^{17}+1}\)
c) \(A=\frac{1999^{1999}+1}{1999^{1998}+1}\) và \(B=\frac{1999^{2000}+1}{1999^{1999}+1}\)
d) \(A=\frac{100^{100}+1}{100^{99}+1}\) và \(B=\frac{100^{69}+1}{100^{68}+1}\)