Tìm m và n nguyên dương thỏa mãn
b, \(^{^{2^m-2^n=256}}\)
Tìm m , n nguyên dương thỏa mãn :
\(2^m-2^n=256\)
Ta có:
2m - 2n = 28
=> Cặp m;n thỏa mãn là:
( 9;8 ).
\(2^m\)-\(2^n\)=256
\(\Rightarrow2^m\)-\(2^n\)=\(2^8\)\(\Rightarrow\)m=9;n=8
Tìm m,n nguyên dương thỏa mãn:
a) 2m+2n=2m+n
b) 2m-2n=256
cần lời giải gấp
b) Vì m,n nguyên dương. Mà vế phải là số dương.Nên m > n
Đặt \(m=n+k\left(k>0,k\inℤ\right)\)
Ta có: \(2^{n+k}-2^n=2^8\Leftrightarrow2^n\left(2^k-1\right)=2^8\)
\(\Rightarrow2^k-1\inƯ\left(2^8\right)\)
Do \(2^k-1\)lẻ.Mà ước của 28 chỉ có 1 là số lẻ.
Suy ra \(2^k-1=1\Leftrightarrow2^k=2\Leftrightarrow k=1\Leftrightarrow n=8\)
Suy ra \(m=k+n=1+8=9\)
Vậy n = 8 ; m = 9
a)2^m-2^m*2^n+2^n-1=-1
(2^m-1)(2^n-1)=1
do m,n là số tự nhiên nên
2^m-1 và 2^n-1 là ước dương của 1
hay đồng thời xảy ra 2^m-1=1 và 2^n-1=1 suy ra m=n=1
Tìm m,n nguyên dương thỏa mãn:
a) 2m + 2n = 2m+n
b) 2m - 2n =256
ai nhanh mk tích nha trc 8 giờ
Tìm m,n nguyên dương thỏa mãn:
a) 2m + 2n = 2m+n
b) 2m - 2n =256
ai nhanh mk tích nha trc 8 giờ
Tìm m,n nguyên dương thỏa mãn : 2^m.2^n=2^m+n
a) CHO 3 SỐ DƯƠNG a , b , c THỎA MÃN abc=1 . CMR: (a+b)(b+c)(c+a)>= 2(1+a+b+c)
b) CHO m,n LÀ 2 SỐ NGUYÊN DƯƠNG THỎA MÃN: m^2+n^2+2018 CHIA HẾT CHO mn. CMR m,n LÀ 2 SỐ LẺ VÀ NGUYÊN TỐ CÙNG NHAU
m.n/(m^2+n^2 ) và m.n/2018
- Đặt (m,n)=d => m= da;n=db ; (a,b)=1
=> d^2(a^2+b^2)/(d^2(ab)) = (a^2+b^2)/(ab) => b/a ; a/b => a=b=> m=n=> ( 2n^2+2018)/n^2 =2 + 2018/n^2 => n^2/2018
=> m=n=1 ; lẻ và nguyên tố cùng nhau. vì d=1
Vẽ SH _I_ (ABCD) => H là trung điểm AD => CD _I_ (SAD)
Vẽ HK _I_ SD ( K thuộc SD) => CD _I_ HK => HK _I_ (SCD)
Vẽ AE _I_ SD ( E thuộc SD).
Ta có S(ABCD) = 2a² => SH = 3V(S.ABCD)/S(ABCD) = 3(4a³/3)/(2a²) = 2a
1/HK² = 1/SH² + 1/DH² = 1/4a² + 1/(a²/2) = 9/4a² => HK = 2a/3
Do AB//CD => AB//(SCD) => khoảng cách từ B đến (SCD) = khoảng cách từ A đến (SCD) = AE = 2HK = 4a/3
Tìm các số nguyên dương m và n , sao cho :
\(2^m-2^n=256\)
Ta có: \(2^m-2^n=256\)
\(\Leftrightarrow2^n\left(2^{m-n}-1\right)=256\)(1)
Ta có: \(2^m-2^n=256\)
\(\Leftrightarrow2^m>2^n\)
\(\Leftrightarrow m>n\)
(1) suy ra \(2^{m-n}-1\) là số lẻ
\(\Leftrightarrow2^{m-n}-1=1\)
\(\Leftrightarrow m-n=1\)
\(\Leftrightarrow2^n=256\)
hay n=8
hay m=1+n=1+8=9
Vậy: (m,n)=(9;8)
Bạn Nguyễn Lê Phước Thịnh ơi? Nhưng mik vẫn ko hiểu tại sao \(2^{m-n}-1\)là số lẻ và m>n lại suy ra được \(2^{m-n}-1=1\)?
tại sao từ 2^m - 2^n lại tách ra thành 2^n.(2^m-n-1) được vậy
Câu 1: Tìm số tự nhiên x biết
a) \(2^{x+1}.3^y=12^x\)
b) \(10^x:5^y=20^y\)
Câu 2: tìm m,n nguyên dương thỏa mãn:
\(2^m-2^n=256\)
Tìm m, n nguyên dương thỏa mãn : \(2^m+2^n=2^{m+n}\)
\(2^m+2^n=2^{m+n}\)
\(\Leftrightarrow2^m-2^{m+n}+2^n=0\)
\(\Leftrightarrow2^m\left(1-2^n\right)-1+2^n=-1\)
\(\Leftrightarrow\left(2^m-1\right)\left(1-2^n\right)=-1\)
\(\Leftrightarrow\hept{\begin{cases}2^m-1=1\\1-2^n=1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}2^m-1=1\\1-2^n=1\end{cases}}\\\hept{\begin{cases}2^m-1=-1\\1-2^n=-1\end{cases}}\end{cases}}\)hoặc \(\hept{\begin{cases}2^m-1=-1\\1-2^n=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2^m=0\\2^n=0\end{cases}}\)( vô lí ) hoặc \(\hept{\begin{cases}2^m=2\\2^n=2\end{cases}}\)
\(\Leftrightarrow m=n=1\)
Không mất tính tổng quát giả sử \(m\ge n\)
Khi đó:\(m=n+k\left(k\in N\right)\)
Ta có
\(2^{n+k}+2^n=2^{2n+k}\)
\(\Leftrightarrow2^n\left(2^k+1\right)=2^{2n+k}\)
Do VP là lũy thừa của 2 nên VP là tích của các số chẵn => \(2^k+1\) chẵn
\(\Rightarrow2^k\) lẻ suy ra k=0
Suy ra m=n
Khi đó pt tương đương với \(2^m+2^m=2^{m+m}\Leftrightarrow2\cdot2^m=4^m\Leftrightarrow2^m=2\Rightarrow m=1\)
Vậy m=1;n=1 là nghiệm của phương trình trên