9 x ( 2016 -x) = 2016
Cho f(x) = x10 - 2016*x9 +......+2016*x2-2016*x +10. Tính f(2015)
\(T\text{ìm a bi\text{ết}: 9 x ( 2016 - a) = 2016 }\)Tìm a biết
9 x ( 2016 - a ) = 2016
9 x ( 2016 - a ) = 2016
2016 - a = 2016 : 9
2016 - a = 224
a = 2016 - 224
a = 1792
9*[2016-x]=2016
9x[2016-x]=2016
2016-x=224 => x=1792
2016-x=-224 => x=2240
2016-x=2016:9=224
x=2016-224
x=179
vậy x=1792
9*[2016-x]=2016
9 x ( 2016 - x ) = 2016
2016 - x = 2016 : 9
2016 - x = 224
x = 2016 - 224
x = 1792
Nho an dung nha Pham Chau Anh, bai minh trinh bay chuan 100%
a, tính GT của đa thức \(f\left(x\right)=\left(x^4-3x+1\right)^{2016}\) tại \(x=9-\dfrac{1}{\sqrt{\dfrac{9}{4}-\sqrt{5}}}+\dfrac{1}{\sqrt{\dfrac{9}{4}+\sqrt{5}}}\)
b, so sánh \(\sqrt{2017^2-1}-\sqrt{2016^2-1}và\dfrac{2.2016}{\sqrt{2017^2-1}-\sqrt{2016^2-1}}\)
c, tính GTBT: \(sinx.cosx+\dfrac{sin^2x}{1+cotx}+\dfrac{cos^2x}{1+tanx}\)
d, biết \(\sqrt{5}\) là số hữu tỉ, hãy tìm các số nguyên a,b tm::
\(\dfrac{2}{a+b\sqrt{5}}-\dfrac{3}{a-b\sqrt{5}}=-9-20\sqrt{5}\)
a.
\(x=9-\dfrac{1}{\sqrt{\dfrac{9-4\sqrt{5}}{4}}}+\dfrac{1}{\sqrt{\dfrac{9+4\sqrt{5}}{4}}}\\ x=9-\dfrac{1}{\dfrac{\sqrt{5}-2}{2}}+\dfrac{1}{\dfrac{\sqrt{5}+2}{2}}\\ x=9-\left(\dfrac{2}{\sqrt{5}-2}-\dfrac{2}{\sqrt{5}+2}\right)=9-8=1\\ \Rightarrow f\left(x\right)=f\left(1\right)=\left(1-1+1\right)^{2016}=1\)
c.
\(=\sin x\cdot\cos x+\dfrac{\sin^2x}{1+\dfrac{\cos x}{\sin x}}+\dfrac{\cos^2x}{1+\dfrac{\sin x}{\cos x}}\\ =\sin x\cdot\cos x+\dfrac{\sin^2x}{\dfrac{\sin x+\cos x}{\sin x}}+\dfrac{\cos^2x}{\dfrac{\sin x+\cos x}{\cos x}}\\ =\sin x\cdot\cos x+\dfrac{\sin^3x}{\sin x+\cos x}+\dfrac{\cos^3x}{\sin x+\cos x}\\ =\sin x\cdot\cos x+\dfrac{\left(\sin x+\cos x\right)\left(\sin^2x-\sin x\cdot\cos x+\cos^2x\right)}{\sin x+\cos x}\\ =\sin x\cdot\cos x-\sin x\cdot\cos x+\sin^2x+\cos^2x\\ =1\)
d.
\(\dfrac{2}{a+b\sqrt{5}}-\dfrac{3}{a-b\sqrt{5}}=-9-20\sqrt{5}\\ \Leftrightarrow\dfrac{-a-5b\sqrt{5}}{\left(a+b\sqrt{5}\right)\left(a-b\sqrt{5}\right)}=-9-20\sqrt{5}\\ \Leftrightarrow\dfrac{a+5b\sqrt{5}}{a^2-5b^2}=9+20\sqrt{5}\\ \Leftrightarrow\left(9+20\sqrt{5}\right)\left(a^2-5b^2\right)=a+5b\sqrt{5}\\ \Leftrightarrow9\left(a^2-5b^2\right)+\sqrt{5}\left(20a^2-100b^2\right)-5b\sqrt{5}=a\\ \Leftrightarrow\sqrt{5}\left(20a^2-100b^2-5b\right)=9a^2-45b^2+a\)
Vì \(\sqrt{5}\) vô tỉ nên để \(\sqrt{5}\left(20a^2-100b^2-5b\right)\) nguyên thì
\(\left\{{}\begin{matrix}20a^2-100b^2-5b=0\\9a^2-45b^2+a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}180a^2-900b^2-45b=0\\180a^2-900b^2+20a=0\end{matrix}\right.\\ \Leftrightarrow20a+45b=0\\ \Leftrightarrow4a+9b=0\Leftrightarrow a=-\dfrac{9}{4}b\\ \Leftrightarrow9a^2-45b^2+a=\dfrac{729}{16}b^2-45b^2-\dfrac{9}{4}b=0\\ \Leftrightarrow\dfrac{9}{16}b^2-\dfrac{9}{4}b=0\\ \Leftrightarrow b\left(\dfrac{9}{16}b-\dfrac{9}{4}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}b=0\\b=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=0\\a=9\end{matrix}\right.\)
Với \(\left(a;b\right)=\left(0;0\right)\left(loại\right)\)
Vậy \(\left(a;b\right)=\left(9;4\right)\)
x-2016/2016+x-2016/2015+x-2016/2014+x-2016/2013+x-2016/2012
bài 1 tính 1/2016 + 2017x 2015/2016 - 2016
bài 2 tìm X biết rằng ( hỗn số 2 và 1/9 - 15/2135 : 9/4270 ) : x = 222/333 : 212/4040 : 132132/660660
ZẢI DÙM MÌNH NHAK ! MÌNH CẦN GẤP LẮM CHIỀU CÓ TIẾT RỒI!
cho x^2/a^2 + y^2/b^2 + z^2/c^2 =x^2+y^2+z^2/a^2+b^2+c^2
CMR x^2016/a^2016 + y^2016/b^2016 +z^2016/c^2016 = x^2016+y^2016+z^2016/a^2016+b^2016+c^2016
Câu 1Tính giá trị biểu thức A biết
A=\(\frac{4+\frac{5}{6}-\frac{1}{9}}{10-\frac{7}{12}+\frac{1}{16}}-\frac{3-\frac{1}{5}+\frac{1}{3}-\frac{1}{9}}{9-\frac{3}{5}+1-\frac{1}{3}}\)
Câu 3 : Tìm x biết : 2016.x+x.\(\frac{1}{2016}\)-2016=\(\frac{1}{2016}\)
Câu 4 : Tìm tất cả các cặp số nguyên x,y biết rằng : (x-y).(y+3)2=9