P=(1+2/1).(1+2/2)+(1+2/3)+....+(1+2/99)
Q=(-1-2-3-4...-99-100).(1/2+2/2^2+1/2^3+...1/2^10)
Cho :
P=(1+2/1).(1+2/2).(1+2/3)....(1+2/99)
Q=(-1-2-3-4-....-99-100).(1/2+1/22+1/23+....+1/210)
Tính \(\frac{P}{Q}\).
Bài 40: Chứng minh rằng:
a) \(A=\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}=9\)
b) \(B=\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{100\sqrt{99}+99\sqrt{100}}=\dfrac{9}{10}\)
Tính giá trị biểu thức
a, A = (1 - 1/1+2) . (1 - 1/1+2+3) . (1- 1/1+2+3+4) . ... .(1- 1/1+2+...+100)
b, B = (2/3+ 3/4 +...+99/100).(1/2+2/3+...+98/99) - (1/2+2/3+...+99/100).(2/3+3/4+...+98/99)
c, C = \(\frac{3^3+1^3}{2^3-1^3}+\frac{5^3+2^3}{3^3-2^3}+\frac{7^3+3^3}{4^3-3^3}+...+\frac{41^3+20^3}{21^3-20^3}\)
ềdfđừytretwrerfwrevcreerwaruircewtdyererrrrrrrrrrrrrrrrdbrbr trưewyt ưt rtf gygr frirfy gfyrgfyur uỷ gyurg rfuy frg egfyryfyrty trg r rei eoer7 87re r7ye7i t 87rt 7 t ryigr yyrggfygfhdg gfhg gf fgg jdfgjh f fggfgfg jffg jfg f gfg fjhg hjfg gfsdj fgdj gfdjfgdjhf gjhg f gfg fk f fjk hjkfghjkfg h hjyjj ỵthj
bài 1
A=1*2*3+2*3*4+3*4*5+...+99*100*101
B=1*3*5+3*5*7+...+95*97*99
C=2*4+4*6+..+98*100
D=1*2+3*4+5*6+...+99*100
E=1^2+2^2+3^2+...+100^2
G=1*3+2*4+3*5+4*6+...+99*101+100*102
H=1*2^2+2*3^2+3*4^2+...+99*100^2
I=1*2*3+3*4*5+5*6*7+7*8*9+...+98*99*100
K=1^2+3^2+5^2+...+99^2
A = 1*2*3 + 2*3*4 + 3*4*5 ... + 99*100*101
=> 4A = 1*2*3*4 + 2*3*4*4 + 3*4*5*4 + ... +99*100*101*4
=> 4A = 1*2*3*4 + 2*3*4*(5 - 1) + 3*4*5*( 6 - 2) + ... + 99*100*101*(102 - 98)
=> 4A = 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + 99*100*101*102 - 98*99*100*101
=> 4A = 99*100*101*102
=> 4A = 101989800
=> A = 25497450
1+(-2)+3+(-4)+5+(-6)+7+(-8)+9+(-10)+11+(-12)=
-1+2+(-3)+4+(-5)+6+(-7)+8+(-9)+10+(-11)+12=
(-1)+(-2)+(-3)+(-4)+.......+(-99)+(-100)=
(-1)+2+(-3)+4+.......+(-99)+100=
1+(-2)+3+(-4)+........+99+(-100)=
lam la co tick nha
1+(-2)+3+(-4)+5+(-6)+7+(-8)+9+(-10)+11+(-12)
=(1+3+5+7+9+11)+[(-2)+(-4)+(-6)+(-8)+(-10)+(-12)]
= 36+-42
=-6
(-1)+2+(-3)+4+(-5)+6+(-7)+8+(-9)+10+(-11)+12
=[(-1)+(-3)+(-5)+(-7)+(-9)+(-11)]+(2+4+6+8+10+12)
=(-36)+42
=6
1)11-12+13-14+15-16+17-18+19-20+21-22+.........+99-100
2)2-4+6-8+......+1998-2000
3)-1+3-5+7-....+97-99
4)1+2-3-4+.........+97+98-99-100
5)1-2+3-4+.............+99-100
6)1+3-5-7+......+97-98-99+100
7)2100-299-298-..........22-2-1
8)1-4+7-10+........+307-310+313
1/1 x 1/2 + 1/2 x 1/3 + 1/3 + 1/4 + .......... + 1/9 x 1/10
2/1 x 2 + 2/2 x 3 + 2/3 x4 + .............. + 2/98 x 99 + 2/99 x 100
= 1/1x2 + 1/2x3 + 1/3x4 ...... +1/9x10
= 1-1/2+1/2-1/3+1/3-1/4+........+1/9-1/10
=1-1/10=9/10
đặt A=1/1 x 1/2 + 1/2 x 1/3 + 1/3 + 1/4 + .......... + 1/9 x 1/10
\(A=\frac{1}{1}\cdot\frac{1}{2}+\frac{1}{2}\cdot\frac{1}{3}+...+\frac{1}{9}\cdot\frac{1}{10}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
đặt B=2/1 x 2 + 2/2 x 3 + 2/3 x4 + .............. + 2/98 x 99 + 2/99 x 100
\(B=2\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=2\left(1-\frac{1}{100}\right)\)
\(=2\times\frac{99}{100}\)
\(=\frac{99}{50}\)
1+(1+2)+(1+2+3)+...+(1+2+3+4+...+99+100)/(1*100+2*99+...+99*2+100*1)*2013
Ta chia thành hai vế (1) và (2)
Số số hạng (1) là :
( 101 - 1 ) : 1 + 1 = 101 ( số )
Tổng (1) là :
( 101 + 1 ) x 101 : 2 = 5151
Tự tính tiếp
\(1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+99+100\right)\)
\(=\left(1+1+1+...+1\right)+\left(2+2+...+2\right)+\left(3+...+3\right)+...+\left(99+99\right)+100\)
\(=1.100+2.99+3.98+...+99.2+100.1\)
Do đó kết quả của phép tính cần tìm là:
\(\frac{1.100+2.99+...+99.2+100.1}{\left(1.100+2.99+...+99.2+100.1\right).2013}=\frac{1}{2013}\)
Rút gọn
A= 2^100+2^99+2^98.....+2+1
B=3^100+3^99+3^98....+3+1
C=4^100+4^99+....+4+1
D=2^100- 2^99+....+2^2 - 2 + 1
E=3^100 - 3^99 + 3^98....- 3 +1
Thu gọn
M= 2 + 2^2 + 2^3 ....+ 2^100
Cho A =2+2^2+2^3+....2^100. Tìm số tự nhiên x sao cho A + 1 = 2x
Bài 1:
a: \(2A=2^{101}+2^{100}+...+2^2+2\)
\(\Leftrightarrow A=2^{100}-1\)
b: \(3B=3^{101}+3^{100}+...+3^2+3\)
\(\Leftrightarrow2B=3^{100}-1\)
hay \(B=\dfrac{3^{100}-1}{2}\)
c: \(4C=4^{101}+4^{100}+...+4^2+4\)
\(\Leftrightarrow3C=4^{101}-1\)
hay \(C=\dfrac{4^{101}-1}{3}\)