Cho nửa đường tròn (O) đường kính AB; Vẽ tiếp tuyến Ax, By của (O). Lấy E thuộc nửa đường tròn, qua E vẽ tiếp tuyến với đường tròn cắt Ax tại D, cắt By tại C. Nối AC cắt BD tại F. CM EF
Cho nửa đường tròn (O) đường kính AB . Lấy M là điểm tùy ý (H\(\varepsilon\)AB) . Trên cùng nửa mawtjj phẳng bờ AB chứa nửa đường tròn (O) vẽ hai đường tròn tâm O\(_1\), đường kính AH và tâm O\(_2\),đường kính BH , MA và MB cắt hai nửa đường tròn (O\(_1\))và (O\(_2\)) lần lượt tại P và Q. Chứng minh:
a) MH=PQ
b) Các tam giác MPQ và tam giác MBA đồng dạng;
c) PQ là tiếp tuyến chung của hai đường tròn (O\(_1\)) và (O\(_2\)).
Cho nửa đường tròn đường kính AB, tâm O. Đường tròn tâm A bán kính AO cắt nửa đường tròn đã cho tại C. Đường tròn tâm B bán kính BO cắt nửa đường tròn đã cho tại D. Đường thẳng qua O và song song với AD cắt nửa đường tròn đã cho tại E. Chứng minh CD song song với AB.
∆ ACB nội tiếp trong đường tròn (O) có AB là đường kính nên ∆ ABC vuông tại C
CO = OA = (1/2)AB (tính chất tam giác vuông)
AC = AO (bán kính đường tròn (A))
Suy ra: AC = AO = OC
∆ ACO đều góc AOC = 60 °
∆ ADB nội tiếp trong đường tròn đường kính AB nên ∆ ADB vuông tại D
DO = OB = OA = (1/2)AB (tính chất tam giác vuông)
BD = BO(bán kính đường tròn (B))
Suy ra: BO = OD = BD
∆ BOD đều
Cho nửa đường tròn tâm O, đường kính AB. 2 điểm C, D thuộc nửa đường tròn tâm O, đường kính AB. Biết BD= 6 cm. Tính bán kính đường tròn
Cho nửa đường tròn tâm O, đường kính AB. Lấy OA làm đường kính, vẽ nửa đường tròn nằm trên nửa mặt phẳng bờ AB chứa nửa đường tròn tâm O. Trên nửa đường tròn đường kính OA lấy điểm C không trùng với A và O, tia OC cắt nửa đường tròn tâm O tại D. Vẽ DH vuông góc với AB. CHứng minh AHCD là hình thang cân
Cho nửa đường tròn tâm O có đường kính AB/2 = R
Cho nửa đường tròn tâm O có đường kính AB = 2R. Kẻ hai tiếp tuyến Ax, By của nửa đường tròn (O) tại A và B (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng có bờ là đường thẳng AB). Qua điểm M thuộc nửa đường tròn (M khác A và B), kẻ tiếp tuyến với nửa đường tròn, cắt tia Ax và By theo thứ tự tại C và D.
a, CM : góc COD = 90o
b, CM : CD = AC + BD
c)Cm AC.BD=ABmu 2
d)CM OC//BM
e)CM AB la tiep tuyen (o'CD/2)
k)CM MN vuong goc AB
h)xac dinh vi tri diem M de chu vi ACDB co GTNN
Bài IV (3,5 điểm) Cho nửa đường tròn tâm O, bán kính R, đường kính AB. Điểm C thuộc đoạn AB (C khác B;A). Trên cùng nửa mặt phẳng bờ AB có chứa nửa (O;R). Vẽ nửa đường tròn tâm I, đường kính AC và nửa đường tròn tâm J, đường kính BC. Qua C kẻ đường thẳng vuông góc với AB cắt (O;R) tại D. DA cắt nửa đường tròn tâm I tại M, DB cắt nửa đường tròn tâm J tại N
1) Chứng minh rằng: Tứ giác MDNC là hình chữ nhật
2) Chứng minh rằng: Tứ giác AMNB nội tiếp.
3) Chứng minh rằng: OD vuông góc MN
4) Tìm vị trí của C trên AB để bán kính đường tròn ngoại tiếp tứ giác AMNB lớn nhất.
Trong nửa đường tròn tâm O đường kính AB =2R, đường tròn (I) tiếp xúc với nửa đường tròn (O) và đường kính AB. Đường tròn (K) tiếp xúc với nửa đường tròn (O) , đường tròn (I) và đường kính AB. Tính hiệu diện tích giữa đường tròn tâm I và đường tròn tâm K theo R
3. Cho nửa đường tròn (o) đường kính AB , M là điểm tùy ý trên nửa đường tròn CM khác AB , kẻ MH vuông góc AB ( H thuộc AB ) , Trên cùng một nửa mặt phẳng bờ AB chứ nửa đường tròn . Vẽ 2 nửa đường tròn tâm O1 , đường kính AH và tâm O2 đường kính BH . MA và MB cắt 2 nửa đường tròn O1 và O2 lần lượt là P và Q
a) chứng minh MH=PQ
b) chứng minh tam giác MPQ và tam giác MBA đồng dạng
c) chứng minh PQ là tiếp tuyến chung của 2 đường tròn O1 và O2
Giải giúp em với ạ ! em đang cần gấp bài này .
Cho nửa đường tròn đường kính AB, tâm O. Đường tròn tâm A bán kính AO cắt nửa đường tròn đã cho tại C. Đường tròn tâm B bán kính BO cắt nửa đường tròn đã cho tại D. Đường thẳng qua O và song song với AD cắt nửa đường tròn đã cho tại E. So sánh hai cung BE và CD.
Cho nửa đường tròn đường kính AB, tâm O. Đường tròn tâm A bán kính AO cắt nửa đường tròn đã cho tại C. Đường tròn tâm B bán kính BO cắt nửa đường tròn đã cho tại D. Đường thẳng qua O và song song với AD cắt nửa đường tròn đã cho tại E. Tính số đo của góc DAO.