CMR
A=10^2014+10^2013+10^2012+10^2011+8 chia hết cho 24
Cho \(M=32+10^{2011}+10^{2012}+10^{2013}+10^{2014}\)
a) Chứng minh rằng M chia hết cho 8
b) Tìm số dư khi M chia cho 24
a. Biểu thức này ta có:
32 chia hết cho 8
mà mấy số kia là 10.........0.
Mà các số có dạng 10...............032 ( N c/s 0 mà có tận cúng 1 số chia hết cho 8 thì số đó chia hết cho 8) bạn có thể kiểm chứng bằng máy tính
Câu b
Không dư vì 24 chia hết cho 8
cảm ơn
Cho M=32+102011+102012+102013+102014
a/ Chứng minh rằng M chia hết cho 8
b/ Tìm số dư khi chia M cho 24
Cho M = 32 + 102011 + 102012 + 102013 + 102014.
a) Chứng minh M chia hết cho 8.
b) Tìm số dư khi chia M cho 24.
2/ Cho M = 32 + 102011 + 102012 + 102013 + 102014
a/ CM : Mc hia hết cho 8
b/ Tìm số dư khi chia M cho 24
2/ Cho M = 32 + 102011 + 102012 + 102013 + 102014
a/ CM : Mc hia hết cho 8
b/ Tìm số dư khi chia M cho 24
M= 32+1000\(^{2009}\)+\(1000^{2010}\)+\(1000^{2011}\)+\(1000^{2012}\)
Vì các số hạng của M chia hết cho 8 nên M chia hết cho 8
cho A=102014+102013+102012+102011 +8
a)chứng minh rằng A chia hết cho 24
b)chứng minh rằng A không phải là số chính phương
a) A có 3 chữ số tận cùng là 008 nên chia hết cho 8 (1)
A có tổng các chữ số là 9 nên chia hết cho 3 (2)
Từ (1) và (2) kết hợp với (3,8) = 1 => A chia hết cho 24
b) A có chữ số tận cùng là 8 nên không là số chính phương
a) A có 3 chữ số tận cùng là 008 nên chia hết cho 8 (1)
A có tổng các chữ số là 9 nên chia hết cho 3 (2)
Từ (1) và (2) kết hợp với (3,8) = 1 => A chia hết cho 24
b) A có chữ số tận cùng là 8 nên không là số chính phương
làm thế nào mà tìm được các chữ số là 9
M=32+102011+102012+102013+102014
a) Chứng minh rằng M chia hết cho 8
b) Tìm số dư khi M chia 24
m=32+10^2011+10^2012+10^2013+10^2014 tim so du cua m khi chia cho 24
Cho A = 32 + 10 mũ 2011 + 10 mũ 2012 + 10 mũ 2013 +2 mũ 2014 - chứng tỏ A chia hết cho 8.
ai giúp mình với cíuuuuuuuuu
A = 32 + 102011 + 102012 + 102013 + 22014
A = 4.8 + 103.(102008 + 102009 + 102010) + 23.22011
A = 4.8 + 23.53.(102008 + 102009 + 102010) + 23.22011
A = 4.8 + 8.53.(102008 + 102009 + 102010) + 8. 22011
A = 8.(4 + 53.(102008 + 102009 + 102010 + 22011) ⋮ 8 (đpcm)