Cho hai số a và b không âm thỏa mãn a^2+b^2=a+b. Tìm GTLN của S= a/a+1 + b/b+1
cho hai số không âm a và b thỏa mãn a2+b2=a+b. Tìm GTLN của biểu thức S= a/(a+1)+b/(b+1)
∙2/(a+b)=2/(a2+b2)≥(a+b)2⇒a+b≤2
Do đó:
S=a/a+1+b/b+1=(1−1/a+1)+(1−1/b+1)=2−(1/a+1+1/b+1)≤2−4/a+b+2≤2−4/2+2=1
Cho hai số không âm a và b thỏa mãn a2+b2=a+b. Tìm GTLN của biểu thức S= a/(a+1)+b/(b+1)
∙2/(a+b)=2/(a2+b2)≥(a+b)2⇒a+b≤2
Do đó:
S=a/a+1+b/b+1=(1−1/a+1)+(1−1/b+1)=2−(1/a+1+1/b+1)≤2−4/a+b+2≤2−4/2+2=1
đề bài này sao sao ý của mik là nhỏ hơn hoặc bằng a+b
cho hai số không âm a và b thỏa mãn : a^2 + b^2 = a + b . Tìm GTLN của biểu thức :
S = a/a+1 + b/b+1
∙2(a+b)=2(a^2+b2)≥(a+b)2⇒a+b≤2
Do đó:
S=a/a+1+b/b+1=(1−1/a+1)+(1−1/b+1)=2−(1/a+1+1/b+1)≤2−4/a+b+2≤2−4/2+2=1
Cho hai số a và b không âm thỏa mãn a2+b2=a+b. Tìm GTLN của \(S=\frac{a}{a+1}+\frac{b}{b+1}\)
∙2/(a+b)=2/(a2+b2)≥(a+b)2⇒a+b≤2
Do đó:
S=a/a+1+b/b+1=(1−1/a+1)+(1−1/b+1)=2−(1/a+1+1/b+1)≤2−4/a+b+2≤2−4/2+2=1
Cho a, b không âm thỏa mãn: \(a^2+b^2=a+b\). Tìm GTLN của biểu thức: \(S=\dfrac{a}{a+1}+\dfrac{b}{b+1}\)
Cho hai số a và b không âm thỏa mãn a2+b2=a+b. Tìm GTLN của S=a/a+1 +b/b+1
Mình nghĩ đề là GTNN thì đúng hơn..... kh biết đè có sai kh nữa
Cho hai số không âm a và b thoả mãn a2+b2=a+b. Tìm GTLN của biểu thức:
\(S=\frac{a}{a+1}+\frac{b}{b+1}\)
Ta CM BĐT \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)
\(\Rightarrow a+b\ge\frac{\left(a+b\right)^2}{2}\)(do a2+b2=a+b)
\(\Rightarrow2\ge a+b\)
Ta có: \(S=\frac{a}{a+1}+\frac{b}{b+1}=2-\left(\frac{1}{a+1}+\frac{1}{b+1}\right)\)
Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
\(\Rightarrow\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{a+1+b+1}\ge1\)
\(\Rightarrow S=2-\left(\frac{1}{a+1}+\frac{1}{b+1}\right)\le1\)
Dấu "=" xảy ra khi: a=b=1
Cho các số thực không âm a, b, c thay đổi thỏa mãn \(a^2+b^2+c^2=1\). Tìm GTLN và GTNN của biểu thức \(Q=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
cho 2 số không âm a,b thỏa mãn a2 +b2=a+b.tìm gtln
S=a/a+1 + b/b+1