Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khôi Nguyên Cute
Xem chi tiết
LÊ PHÚC KHÁNH
22 tháng 12 2020 lúc 22:01

∙2/(a+b)=2/(a2+b2)≥(a+b)2⇒a+b≤2

Do đó:

S=a/a+1+b/b+1=(1−1/a+1)+(1−1/b+1)=2−(1/a+1+1/b+1)≤2−4/a+b+2≤2−4/2+2=1

Khách vãng lai đã xóa
Khôi Nguyên Cute
Xem chi tiết
LÊ PHÚC KHÁNH
22 tháng 12 2020 lúc 22:01

∙2/(a+b)=2/(a2+b2)≥(a+b)2⇒a+b≤2

Do đó:

S=a/a+1+b/b+1=(1−1/a+1)+(1−1/b+1)=2−(1/a+1+1/b+1)≤2−4/a+b+2≤2−4/2+2=1

Khách vãng lai đã xóa
Trịnh Công Huy
1 tháng 6 2021 lúc 21:23

đề bài này sao sao ý của mik là nhỏ hơn hoặc bằng a+b

Khách vãng lai đã xóa
đỗ thanh hà
Xem chi tiết
LÊ PHÚC KHÁNH
22 tháng 12 2020 lúc 21:59

∙2(a+b)=2(a^2+b2)≥(a+b)2⇒a+b≤2

Do đó:

S=a/a+1+b/b+1=(1−1/a+1)+(1−1/b+1)=2−(1/a+1+1/b+1)≤2−4/a+b+2≤2−4/2+2=1

Khách vãng lai đã xóa
Trần Dương An
Xem chi tiết
LÊ PHÚC KHÁNH
22 tháng 12 2020 lúc 22:01

∙2/(a+b)=2/(a2+b2)≥(a+b)2⇒a+b≤2

Do đó:

S=a/a+1+b/b+1=(1−1/a+1)+(1−1/b+1)=2−(1/a+1+1/b+1)≤2−4/a+b+2≤2−4/2+2=1

Khách vãng lai đã xóa
Big City Boy
Xem chi tiết
Etermintrude💫
11 tháng 3 2021 lúc 22:39

undefined

Jenny Hoàng
Xem chi tiết
Nguyễn Đức Huy
6 tháng 4 2018 lúc 20:23

Đề đúng bn ak !

ミ★ɦυүềη☆bùї★彡
Xem chi tiết
Pham Quoc Cuong
17 tháng 4 2018 lúc 17:52

Ta CM BĐT \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)

\(\Rightarrow a+b\ge\frac{\left(a+b\right)^2}{2}\)(do a2+b2=a+b) 

\(\Rightarrow2\ge a+b\) 

Ta có: \(S=\frac{a}{a+1}+\frac{b}{b+1}=2-\left(\frac{1}{a+1}+\frac{1}{b+1}\right)\)

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

\(\Rightarrow\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{a+1+b+1}\ge1\)

\(\Rightarrow S=2-\left(\frac{1}{a+1}+\frac{1}{b+1}\right)\le1\) 

Dấu "=" xảy ra khi: a=b=1

ducquang050607
Xem chi tiết
pham van
Xem chi tiết