Chứng minh tam giác nội tiếp trong nửa đường tòn là tam giác vuông
Cho đường tròn (O; r) nội tiếp tam giác ABC vuông tại A. Chứng minh rằng r=p-a |
, trong đó p là nửa chu vi tam giác, a là độ dài cạnh huyền. |
Cho tam giác ABC có ba góc đều nhọn nội tiếp trong đường tròn (O;R) Các đường cao AD, BE, CF đồng quy
tại H, r là bán kính đường tròn nội tiếp trong tam giác ABC
a) Chúng minh OA vuông góc EF
b) Chứng minh rằng H là tâm đường tròn nội tiếp tam giác DEF
c) Chứng minh rằng nếu AD+BE+CF =9r thì tam giác ABC là tam giác đều
d)Cho AB=\(R\sqrt{2}\),AC=\(R\sqrt{3}\) thì tam giác DEF là hình gì?Vì sao?
Cho tam giác nhọn DEF(DE<DF)nội tiếp trong đường tròn(O;R)ba đường cao DK,EM,FN cắt nhau tại H a)Chứng minh DMHN,DMKE là các tứ giác nội tiếp b)Vẽ đường kính DS của đường tròn O.Chứng minh tam giác DFK đồng dạng với tam giác DSE
c)chứng minh OF vuông góc với KM
Giúp mk với sắp kt rùi:((
a: Xét tứ giác DMHN có \(\widehat{DMH}+\widehat{DNH}=90^0+90^0=180^0\)
nên DMHN là tứ giác nội tiếp
Xét tứ giác DMKE có \(\widehat{DME}=\widehat{DKE}=90^0\)
nên DMKE là tứ giác nội tiếp
b: Xét (O) có
\(\widehat{DFE}\) là góc nội tiếp chắn cung DE
\(\widehat{DSE}\) là góc nội tiếp chắn cung DE
Do đó: \(\widehat{DFE}=\widehat{DSE}\)
Xét (O) có
ΔDES nội tiếp
DS là đường kính
Do đó: ΔDES vuông tại E
Xét ΔDES vuông tại E và ΔDKF vuông tại K có
\(\widehat{DSE}=\widehat{DFK}\)
Do đó: ΔDES đồng dạng với ΔDKF
c: Kẻ tiếp tuyến Fx của (O)
Xét (O) có
\(\widehat{xFE}\) là góc tạo bởi tiếp tuyến Fx và dây cung FE
\(\widehat{EDM}\) là góc nội tiếp chắn cung EF
Do đó: \(\widehat{xFE}=\widehat{EDM}\)
mà \(\widehat{EDM}=\widehat{MKF}\left(=180^0-\widehat{MKE}\right)\)
nên \(\widehat{xFE}=\widehat{MFK}\)
mà hai góc này là hai góc ở vị trí so le trong
nên MK//Fx
Ta có: MK//Fx
OF\(\perp\)Fx
Do đó: OF\(\perp\)MK
Cho tam giác ABC nhọn (AC < AB) nội tiếp đường tròn O đường kính AD. Đường cao CF và BG cắt nhau tại H kẻ OI vuông BC
a) Chứng minh tứ giác CFBD nội tiếp đường tròn
b)chứng minh tam giác ACD đồng dạng tam giác CFB
c)chứng minh tứ giác CHBD là hình bình hành và CD.CG=BD.BF
d)chứng minh I, H, D thẳng hàng
cho tam giác ABC vuông tại A. Kẻ đường cao AH. Gọi I,K tương ứng là tâm các đường tròn nội tiếp tam giác ABH và tam giác ACH
1/Chứng minh tam giác ABC đồng dạng với tam giác HIK
2/ Đường thẳng IK cắt AB,AC lần lượt tại M,N
a/ Chứng minh tứ giác HNCK nội tiếp trong một đường tròn
b/ Chứng minh AM=AN
C/ Chứng minh S'<=1/2S trong đó S,S' lần lượt là diện tích tam giác ABC và tam giác AMN
cho tam giác ABC vuông tại A. Kẻ đường cao AH. Gọi I,K tương ứng là tâm các đường tròn nội tiếp tam giác ABH và tam giác ACH
1/Chứng minh tam giác ABC đồng dạng với tam giác HIK
2/ Đường thẳng IK cắt AB,AC lần lượt tại M,N
a/ Chứng minh tứ giác HNCK nội tiếp trong một đường tròn
b/ Chứng minh AM=AN
C/ Chứng minh S'<=1/2S trong đó S,S' lần lượt là diện tích tam giác ABC và tam giác AMN
Cho tam giác $ABC$ vuông tại $A$. Đường tròn $(O)$ nội tiếp tam giác $ABC$ tiếp xúc với $AB$, $AC$ lần lượt tại $D$ và $E$.
a) Tứ giác $ADOE$ là hình gì?
b) Chứng minh \(S=p.r\) ($p$ là nửa chu vi tam giác $ABC$, $r$ là bán kính đường tròn nội tiếp).
b) Tính bán kính của đường tròn $(O)$ biết $AB = 6cm$, $AC = 8cm$.
BÀI LÀM
a, xét tứ giác ADOE có:
góc A= góc E=góc D=90O
mà ta thấy: OE=OD( bán kính = nhau)
vậy tứ giác ADOE là hình vuông (dhnb)
a) Dễ thấy tứ giác AEOD là hình chữ nhật (tứ giác có 3 góc vuông).
Mà OD = OE ( cùng bằng bán kính đường tròn nội tiếp tam giác ABC).
Nên tứ giác AEOD là hình vuông.
b) Gọi H là chân đường vuông góc kẻ từ O xuống BC.
Có SΔABC=SΔOAB+SΔOBC+SΔOAC
=12 OD.AB+12 OE.AC+12 OH.BC
=12 r.(AB+AC+BC)
=12 pr ( là chu vi của tam giác , là bán kính đường tròn nội tiếp).
c) Áp dụng định lý Pi-ta-go ta có: BC=√AB2+AC2=10(cm).
Diện tích tam giác ABC là: 12 AB.AC=12 .6.8=24(cm2).
Chu vi tam giác ABC là: 6+8+10=24(cm).
Suy ra: 24=12 .24.r⇔r=2(cm).
a) Dễ thấy tứ giác AEOD là hình chữ nhật (tứ giác có 3 góc vuông).
Mà OD = OE ( cùng bằng bán kính đường tròn nội tiếp tam giác ABC).
Nên tứ giác AEOD là hình vuông.
b) Gọi H là chân đường vuông góc kẻ từ O xuống BC.
Có
( là chu vi của tam giác , là bán kính đường tròn nội tiếp).
c) Áp dụng định lý Pi-ta-go ta có: .
Diện tích tam giác ABC là: .
Chu vi tam giác ABC là: .
Suy ra: .
Cho tam giác ABC vuông ở đỉnh A. Trên cạnh AC lấy điểm M (khác với A và C). Vẽ đường tròn (O) đường kính MC. Gọi N là giao điểm thứ 2 của cạnh BC với đường tròn (O). Nối BM và kéo dài, cắt đường tròn (O) tại điểm thứ hai là P. 1) Chứng minh rằng tứ giác AMNB là tứ giác nội tiếp. 2) Chứng minh rằng hai tam giác ABP và MNP đòng dạng. 3) Đường thẳng AP cắt đường tòn (O) tại điểm thứ 2 là D (khác P). Đường thẳng ND cắt các đường thẳng AC và PC lần lượt tại E và G. Chứng minh rằng CM.CE = CP.CG
a,ta có góc MAB=90°; MNB=90°(gt);(góc nội tiếp chắn 1/2đtròn)
xét tứ giác AMNB có góc MAN+MNB=90°+90°=180°
suy ra AMNB nội tiếp
b, ta có góc CAB=90°(gt); CPB=90°( góc nội tiếp chắn 1/2đtròn)
xét tứ giác CPAB có góc CAB=CPB=90°
suy ra CPAB nội tiếp ( hai góc bằng nhau cùng chắn cung CB)
suy ra góc BCA=BPA(1)
góc PBA=PCA(2)
mà góc MPN=ACB=1/2sđcung MN(3)
góc PCA=PNM=1/2sđcung PM(4)
từ 1,3 suy ra góc ACB=MPN
từ 2,4 suy ra góc PNM=PBA
xét hai tam giác PAB và PMN có
góc APB=MPN(cmt)
góc PNM=PBA(cmt)
suy ra hai tam giác đó đồng dạng (đpcm)
c, ta có góc PDN=PCN=1/2sđ cung PN(1)
góc PAC=PBC(CPAB nội tiếp)(2)
mà góc PBC+PCB=90°(3)
từ 1,2,3 suy ra góc DAC+ADE=90°
suy ra DN vuông với AC
xét hai tam giác PCM và ECG có góc C chung
góc CEG=CPM=90°
suy ra hai tam giác đó đồng dạng
suy ra PC/EC=CM/CG
suy ra PC.CG=EC.CM(đpcm)
Cho tam giác $ABC$ vuông tại $A$, nội tiếp trong đường tròn tâm $I$; bán kính $r$. Gọi $P$ là trung điểm của $AC$; $AH$ là đường cao của tam giác $ABC$.
a) Chứng minh tứ giác $APHI$ nội tiếp được trong đường tròn. Xác định tâm $K$ của đường tròn này.
b) Chứng minh hai đường tròn $(I)$ và $(K)$ tiếp xúc nhau.
oke bạn