cho A =n(n-1).(n+1).(n^2+1)
Chứng minh rằng Achia hết cho 10
1, Cho A=2=2^2+2^3+...+2^20
Chứng minh
a)A chia hết cho 2
b)Achia hết cho 3
c)A chia hết cho 5
2, Cho n∈N. CMR
a)10^n-1 chia hết cho 9
b)10^n+8chia hết cho 9
c)n^2+n+1ko chia hết cho 4
Mí bn giúp mk nhanh nha, mai mk hc òi
Thank you mí bé
mk quên nữa, CMR là chứng minh rằng nhé. Mí bn giúp mk nhanh nhanh nha!Thank you!
cho A=(n+1).(3n+2).(n thuộc N).Chứng tỏ rằng Achia hết cho 2
cho x,y thuộc N và (x+2y)chia hết cho 5. Chứng tỏ rằng (3x -4y)chia hết cho 5
các bạn giúp mình với
cho A= 1+3+32+33+..........+ 311 a. chứng minh rằng Achia hết cho 4 ;b.chứng minh rằng Achia hết 10;c.chứng minh rằng A chia hết cho 13
\(A=1+3+3^2+..........+3^{11}\)
\(\Leftrightarrow A=\left(1+3\right)+\left(3^2+3^3\right)+.........+\left(3^{10}+3^{11}\right)\)
\(\Leftrightarrow A=1\left(1+3\right)+3^2\left(1+3\right)+.........+3^{10}\left(1+3\right)\)
\(\Leftrightarrow A=1.4+3^2.4+.......+3^{10}.4\)
\(\Leftrightarrow A=4\left(1+3^2+..........+3^{10}\right)⋮4\left(đpcm\right)\)
A = 1 + 3 + 32 + 33 + ... + 311
A = ( 1 + 3 ) + ( 32 + 33 ) + ... + ( 310 + 311 )
A = 4 + 32 . ( 1 + 3 ) + ... + 310 . ( 1 + 3 )
A = 4 + 32 . 4 + ... + 310 . 4
A = 4 . ( 1 + 32 + ... + 310 ) \(⋮\) 4 ( Vì trong tích có một thừa số chia hết cho 4 )
~ Chúc bạn học giỏi ! ~
A = 1 + 3 + 32 + 33 + ... + 311
A = ( 1 + 3 + 32 ) + ... + ( 39 + 310 + 311 )
A = 13 + ... + 39 . ( 1 + 3 + 32 )
A = 13 + ... + 39 . 13
A = 13 . ( 1 + ... + 39 ) \(⋮\) 13 ( Vì trong tích có một thừa số chia hết cho 13 )
~ Chúc bạn học giỏi ! ~
Bài 1 :Cho A=n4-2n3-n2+2n,trong đó n thuộc Z .Chứng minh rằng Achia hết 24.
Bài 2:Cho biểu thức a=n5-n,trong đó n thuộc Z.Chứng minh rằng A chia hết 6.
M.n GiÚp Mk BàI nÀi NhA!~~
Mơn~~
Bài 2 phải là chứng minh chia hết cho 5 chứ nhỉ
Bài 2:
\(n^5-n\)
\(=n\left(n^4-1\right)\)
\(=n\left(n^2-1\right)\left(n^2+1\right)\)
\(=n\left(n^2-1\right)\left(n^2-4+5\right)\)
\(=n\left(n^2-1\right)\left(n^2-4\right)+5n\left(n^2-1\right)\)
\(=\left(n^2-1\right)\left[n\left(n^2-4\right)+5n\right]\)
\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n^2-1\right)⋮5\)
Bài 1:
\(A=n^4-2n^3-n^2+2n\)
\(=n^3\left(n-2\right)-n\left(n-2\right)\)
\(=\left(n^3-n\right)\left(n-2\right)\)
\(=n\left(n+1\right)\left(n-1\right)\left(n-2\right)\)
Mà tích của 4 số liên tiếp luôn \(⋮24\Rightarrow A⋮24\left(đpcm\right)\)
Chứng minh rằng:
a, (n + 10) . (n+15) chia hết cho 2
b, n. (n+1) . (n+2) chia hết cho 2 và 3
c, n^2 + n + 1 không chia hết cho 4 à 2 và 5
1/Chứng minh rằng với e thuộc N , thì các số sau chia hết cho 9 :
a/10n-1
b/10n+8
2/Tìm điều kiện của n thuộc N để số 10n-1 chia hết cho 9 và 11
3/Cho A = 8n + 1111...111 (n thuộc N*)
1111.....111 có n chữ số 1
Chứng minh rằng A chia hết cho 9
\(1.a,10^n-1=100..0-1\)(n chữ số 0)=999..99(n chữ số 9)chia hết cho (vì có tổng bằng 9+9+..+9 chia hết cho 9)
\(b,10^n+8=100..0+8\)(n chữ số 0) = 1000...08.
Tổng các chữ số là: 1+0+0+...+8=9 chia hết cho 9.
2.
Tạm thời mik chỉ bik lm bài 1 nên pn thông cảm nhé
1 a) pn thao khảo tại nhé do ở đây có bài giống nên mik gửi link luôn nhé! http://olm.vn/hoi-dap/question/651590.html
b) Ta có: 10n+8= 1000000000000.......000+8
n chữ số 0
=> 10n+8= 10000000000........008
n chữ số 8
Ta có tổng các chữ số của 10n+8 bằng: 1+00000000.....000 ( Với n chữ số 0)+8= 1+0+8=9
Vì 9 chia hết cho 9 => 10n+8 chia hết cho 9
ta có : \(^{10^n}\) = 999...9 ( có n số 9 ) vì 9999...9 chia hết cho 9
suy ra 10^n - 1 chia hết cho 9
1. Với mọi a,b,n thuộc N thì B = ( 10n - 1 ) .a + (11....1 -n).b chia hết cho 9 ( có n chữ số 1 )
2. Chứng minh rằng:
a) 10n- 36n -1 chia hết cho 27 với n thuộc N; n nhỏ hơn hoặc bằng 2
b) số 11...1 chia hết cho 27 ( có 27 chữ số 1 )
3. cho a - 5b chia hết cho 17 ( a,b thuộc N ). Chứng minh rằng 10a+b chia hết cho 17
4. Chứng minh rằng : n(2n+1 )( 7n +1 ) chia hết cho 6 với n thuộc N
5. Cho hai số tự nhiên abc và deg đều chia 11 dư 5 . Chứng minh rằng số abcdeg chia hết cho 11
6. Cho biết số abc chia hết cho 7. Chứng minh rằng: 2a +3b +c chia hết cho 7
cho n là STN. Chứng minh rằng:
a, (n+10) (n+15) chia hết cho 2
b, n (n+1)(n+2) chia hết cho 2 và cho 3
c, n (n+1)(2n+1) chia hết cho 2 và cho 3
mình biết cách làm
đó mai mình
chỉ cho nhé vì
mình cũng làm bài
này nhiều rùi
a, nếu n chẵn thì n+10 chẵn nên (n+10)(n+15) chẵn nên chia hết cho 2
b,vì n(n+1)(n+2) là tích 3 số tự nhiên liên tiếp nên tồn tại 1 số chia hết cho 2 và một số chia hết cho 3
vậy n(n+1)(n+2) chia hết cho 2 và 3
c, Ta có n(n+1)(2n+1) luôn chia hết cho 2 vối mọi n thuộc N ( tự CM như câu a)
n(n+1)(2n+1) luôn chia hết cho 3 với mọi n thuộc N
Vậy..
chứng minh rằng
cho n thuộc N
a) (n+10) . (n+15) chia hết cho 2
b) n . (n+1) . (2n+1) chia hết cho 2 và 3
đây có phải là Tin học đâu ! VỚ VẨN
a) vì n+ 10 chia hết cho 2
Mà 10 chia hết cho 2
=> n chia hết cho 2
=> (n+10). ( n +15) chia hết cho 2 (đpcm)