Nếu p>(=) 5 và 2p+1 đều là các số nguyên tố thì 4p+1 là số nguyên tố hay hợp số
nếu p lớn hơn hoặc bằng 5 và p , 2p + 1 đều là các số nguyên tố thì 4p + 1 là số nguyên tố hay hợp số
Bạn xem lại đề nhé , với p lớn hơn hoặc bằng 5 thì 2p rõ ràng không là số nguyên tố.
Nếu p là số nguyên tố lớn hơn 5 và 2p+1 cũng là số nguyên tố thì 4p+1 là số nguyên tố hay hợp số
Nếu p là số nguyên tố lớn hơn 5 và 2p+ 1 cũng là số nguyên tố thì 4p + 1 là số nguyên tố hay hợp số ?
P là số nguyên tố lớn hơn 5 và 2p+1 cũg là số nguyen tố thì có dạg 3k +1 và 3k+2
Nếu p=3k+1thif chia het cho 3 => 3k+1k phải là số nguyen tố => loại
=> p =3k+2 . Khi đó chia het cho 3
=> 4k+1 là hop so
TICH NHA CHI IU
xin lỗi em mới học lớp 55 nên ko giải được
nếu P là số nguyên tố lớn hơn 3 và 2P+1 là số nguyên tố thì 4P+1 là nguyên tố hay hợp số
P là số nguyên tố lớn hơn 3 => P=3k+1 hoặc P=3k+2
=> 4P+1=12k+2 hoặc =12k+3
vậy là hợp số
P là số nguyên tố lớn hơn 3 nên P có 2 trường hợp \(\hept{\begin{cases}3k+1\\3k+2\end{cases}}\)
Xét trường hợp 1) \(P=3k+1\)
Ta có \(2P+1=2\left(3k+1\right)+1=6k+2+1=6k+2+1=6k+3\left(⋮3\right)\)nên là hợp số (loại)
Xét trường hợp 2) \(P=3k+2\)
Ta có \(2P+1=2\left(3k+2\right)+1=6k+4+1=6k+5\) là số nguyên tố theo đề bài nên ta chọn
Vậy \(4P+1=4\left(3k+2\right)+1=12k+8+1=12k+8+1=12k+9\) thấy \(12k\) và \(9\)đều \(⋮3\) nên \(12k+9\) là hợp số
Từ đó,suy ra \(4P+1\) là hợp số
\(\Rightarrowđpcm\)
Bài 1: tìm 3 số tự nhiên lẻ liên tiếp đều là số nguyên tố
Bài 2: cho p lớn hơn hoặc bằng 5 và p;2p+1 đều là các số nguyên tố thì 4p+1 là số nguyên tố hay hợp số ?
Cho p lớn hơn hoặc bằng 5. Nếu p và 4p+1 là số nguyên tố thì 2p+1 là số nguyên tố hay hợp số?
nếu P là số nguyên tố lớn hơn 3 và 2P+1 cũng là số nguyên tố thì 4P+1 là số nguyên tố hay hợp số
Nếu p là số nguyên tố lớn hơn 3 và 2p+1 cùng là số nguyên tố thì 4p+1 là số nguyên tố hay là hợp số ?
Cho p > hoặc bằng 5.Nếu p và 4p+1 là 2 số nguyên tố thì 2p+1 là số nguyên tố hay hợp số
THANKS
\(p\ge5\Rightarrow p\) có một trong 2 dạng:\(3k+1;3k+2\left(k\inℕ^∗\right)\)
Với \(p=3k+1\Rightarrow2p+1=2\left(3k+1\right)+1=6k+3=3\left(2k+1\right)⋮3\)
Với \(p=3k+2\Rightarrow4p+1=4\left(3k+2\right)+1=12k+8+1=12k+9⋮3\)
Vậy \(2p+1\) là hợp số