Cho tam giác nhọn ABC Các đường cao BD và CE cắt nhau tại H biết HB = 6 cm HC = 9 cm và BD+ CE = 20 cm Tính độ dài BD và CE
Cho tam giác nhọn ABC , hai đường cao BD và CE cắt nhau tai H . Gọi B’ và C’ là hai điểm tương ứng trên các đoạn HB,HC,biết góc AB’C=góc AC’B=90. CM góc AB’C’= góc AC’B’
Cho tam giác ABC cân tại A , góc A nhọn. Đường cao BD và CE cắt nhau tại H, vẽ điểm M là trung điểm của BC. Cm: a)BD = CE. b)ED // BC. c)Giao điểm A, H, M thẳng hàng. d)ED < BC.
a) Xét ΔABD vuông tại D và ΔACE vuông tại E có:
AB = AC (ΔABC cân tại A)
∠BAD chung
⇒ ΔABD = ΔACE (cạnh huyền - góc nhọn)
⇒ BD = CE (hai cạnh tương ứng)
Vậy BD = CE
Cho tam giác ABC nhọn, các đường cao BD, CE. Tia phân giác của các góc A B D ^ v à A C E ^ cắt nhau tại O, và lần lượt cắt AC, AB tại N, M. Tia BN cắt CE tại K, tia CM cắt BD tại H: Chứng minh rằng:
a) BN ^ CM;
b) Tứ giác MNFIK là hình thoi
a) Sử dụng tính chất tổng các góc trong một tam giác bằng 1800.
⇒ A B C ^ = A E C ^ ⇒ N B D ^ = M C A ^
Trong DDBN có: N B D ^ + B N D ^ = 90 0
Gọi O = CM Ç BN Þ CM ^ BN = O (1)
b) Xét DCNK có: CO ^ KN Þ CO ^ BN, CO là phân giác A C E ^ nên DCNK cân ở C Þ O là trung điểm KN (2).
Tương tự chứng minh được là trung điểm MH (3).
Từ (1),(2) và (3) suy ra MNHK là hình thoi.
cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn tâm (O) . Đường cao BD và đường cao CE cắt nhau tại H , BD cắt CE tại F, AF cắt đường tròn (O) tại K.
a, Cm : tứ giác BCDE nội tiếp, xác định tâm đường tròn.
b, cm : FA .FK = FE.FD;
c. CM : FH vuông góc với AM
Mình sửa lại đề: Cho tam giác ABC nhọn (AB < AC) nội tiếp (O). Đường cao BD, CE cắt nhau tại H. EF cắt BC tại F. AF cắt lại (O) tại K. Gọi M là trung điểm của BC.
a) Từ gt dễ thấy tứ giác BCDE nội tiếp đường tròn tâm M.
b) Tứ giác BCDE nội tiếp nên theo phương tích ta có FB . FC = FD . FE.
Tứ giác AKBC nội tiếp nên theo phương tích ta có FK . FA = FB . FC.
Vậy ta có đpcm.
c) Ta có FA . FK = FE . FD nên theo phương tích đảo ta có tứ giác AKED nội tiếp.
Gọi giao điểm thứ hai của đường tròn đường kính AH và FH là N.
Khi đó FH . FN = FE . FD = FB . FC.
Suy ra tứ giác BHNC nội tiếp.
Ta có \(\widehat{DNC}=360^o-\widehat{DNH}-\widehat{CNH}=\left(180^o-\widehat{DNH}\right)+\left(180^o-\widehat{CNH}\right)=\widehat{DEH}+\widehat{HBC}=2\widehat{HBC}=\widehat{DMC}\).
Do đó tứ giác DNMC nội tiếp.
Tương tự tứ giác ENMB nội tiếp.
Suy ra \(\widehat{DNM}+\widehat{DNA}=180^o-\widehat{ACB}+\widehat{AED}=180^o\) nên A, N, M thẳng hàng.
Từ đó \(\widehat{MHN}=\widehat{ANH}=90^o\) nên \(FH\perp AM\).
(Câu c là trường hợp đặc biệt của định lý Brocard khi tứ giác BEDC nội tiếp đường tròn tâm M).
Cho tam giác nhọn ABC các đường cao BD, CE. Tia phân giác của góc ABD cắt AC và AB theo thứ tự tại N và M, tia BN cắt CE tại K. Tia CM cắt BD tại H. Chứng minh BN vuông góc với CM
ch tam giác nhọn ABC nội tiếp trong đường tròn tâm O đường cao BD và CE cắt nhau tại H
a) cm các tứ giác ADHE và BCDE nội tiếp
b0 tia BD và CE lần lượt cắt đường tròn (O)tại M và N CM DE//MN
Cho tam giác abc cân tại a, hai đường cao BD và CE cắt nhau tại I (d thuộc ac; e thuộc ab).
a) cm BD = CE.
b) CM : tam giác AED là tam giác cân và ed // bc.
c) Biết góc BAC = 70 độ. tính các góc của tam giác ibc.
d) Qua b kẻ tia Bx//CE; qua C kẻ Cy //bd. Bx và Cy cắt nhau tại M. cm IM đi qua trung điểm của BC.
cho tam giác ABC nhọn, BD là đường trung tuyến, CE là đường cao. Sao cho BD = CE và góc BDC = góc ECA. BD cắt CE tại H. Chứng minh a) HE*HC = HB*HD
b) chứng minh tam giác ABC đều